Project description
Focusing on landscape reshaping processes’ data
Landscape reshaping processes exert great impact on wildlife, humans and their habitats. Over the last decades, the use of high-resolution laser scanning technologies to document, monitor, and analyse the morphological signatures these processes imprint on the terrain has improved our understanding of their nature and helped develop strategies to avert hazards and deliver a more sustainable future. However, the fragmented nature of current research in this area prevents researchers from taking full advantage of the large amounts of available data. The EU-funded MorE3D project will introduce a processing framework that will combine the data with geoscientist practices to improve the interaction with the data by highlighting features and offering analyses necessary for the assessment of natural processes.
Objective
Landscape reshaping processes have an immense effect on humans, being a fundamental component of their habitat. The morphological signatures they leave on the terrain enable us to trace them, understand their nature, develop strategies to avert hazards and provide a more sustainable future. As such entities are better traced in their natural 3-D shape, the last decade has seen an expedite growth in the use of high-resolution laser scanning (LiDAR) technologies to document, monitor, and analyse them. Nonetheless, the unorganised nature, span and massive data volume, turn the interaction with the acquired data cumbersome and difficult. Hence, common practices are rooted in manual feature delineation or in use of off-the-shelf raster-based tools, which were developed for different applications and scales. The outcome may be subjective and prone to misidentifications or distortions. As there is an evident gap between the richness of the data and geoscientists practices, I propose in MorE3D to develop a new processing framework that strengthens that link. This will enable to highlight features, provide quantitative morphometric information, and facilitate analysis of trends and patterns which are essential to asses natural processes. Based on the understanding of the geometric signature recorded within the data, I propose to cast this as an energy-based approach that uses global optimisation to detect entities. Furthermore, as many applications combine active and passive sensors (lasers and cameras, for example) or use drone-based imaging to supplement the data during acquisition, I will to further extend the proposed scheme and develop a unified multichannel optimisation framework, where all acquired information is integrated and utilised. Such models will open new avenues to analyse features, detect patterns, trace changes, and essentially enable accurate measurements of the processes affecting landforms, while paving the way to the relevant research communities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1040 Wien
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.