European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

DimerCat: Isolated dimers for catalyzing CO2 electroreduction to higher carbon products

Descripción del proyecto

Catalizadores dopados con carbono ayudan a convertir el CO2 en combustibles y productos químicos

Por primera vez en la historia de la humanidad, los niveles de CO2 en la atmósfera superaron las 415,26 partes por millón en 2019, según los sensores del Observatorio Mauna Loa en Hawái. La reducción electroquímica del CO2 proporciona un camino potencial para eliminar este dañino gas de la atmósfera. El proyecto DimerCat, financiado con fondos europeos, investigará catalizadores de carbón dopados con dímeros metálicos para la conversión eficiente del CO2 en productos químicos y combustibles basados en carbono. Los catalizadores basados en carbono se eligen por su gran selectividad para formar CO, aunque se prevé que los dímeros metálicos favorezcan el acoplamiento CO-CO, lo que lleva a la formación de productos C2 como el etileno. Además del diseño del catalizador, el proyecto tiene como objetivo superar los dos principales desafíos relacionados con los catalizadores: su selectividad y su producción a gran escala.

Objetivo

For the first time in human’s history, the level of CO2 in the atmosphere has reached the highest level of 415.26 ppm on May 11, 2019. This results in severe climatic change throughout the world. Electrochemical CO2 reduction can convert this harmful CO2 to value-added carbon-based chemicals and is a carbon-neutral method of storing renewable electricity in the form of chemicals.
This proposal aims to investigate carbon catalysts doped with metal-dimers as catalysts for CO2 reduction to higher-carbon (C2) products. Carbon-based catalysts are selected because of their high selectivity towards CO formation and the doped metal dimers are expected to favor the CO-CO coupling leading to the formation of C2 products. This would emulate the functionality of the nitrogenase enzyme, where V-V dimers are able to catalyze the formation of ethylene and other C2 products. The world-leading expertise of Prof. Magda Titirici (host) and Dr. Ifan Stephens; and the vibrant scientific community and state-of-the-art equipment at Imperial College, provide the perfect environment to successfully host my project despite its challenging nature. The deep expertise I have acquired during my Ph.D. in nanosynthesis and in-situ X-ray absorption spectroscopy of electrocatalysts would strongly complement my hosts’ expertise in carbon synthesis and operando testing. The bottleneck in the catalytic cycle will be identified and addressed. This new fundamental understanding will not only empower the scientific community but also enable the development of efficient electrocatalyst for higher-carbon product formation during CO2 reduction. Secondment will be carried out at Johnson Matthey that would allow us to scale-up the technology, developed at Imperial. Thus, the proposed project will try to solve the three major challenges of catalyst design, selectivity, and scalability and would equip me with scientific, technical and managerial skills to become a leading independent researcher.

Coordinador

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Aportación neta de la UEn
€ 212 933,76
Dirección
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Reino Unido

Ver en el mapa

Región
London Inner London — West Westminster
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 212 933,76