Skip to main content
European Commission logo print header

DimerCat: Isolated dimers for catalyzing CO2 electroreduction to higher carbon products


Dotierte Kohlenstoff-Katalysatoren zur Umwandlung von CO2-Gas in Brennstoffe und Chemikalien

Laut Sensoren der Messstation Mauna Loa auf Hawaii hat die CO2-Konzentration in der Atmosphäre im Jahr 2019 zum ersten Mal in der Geschichte der Menschheit den Wert von 415,26 Teilen pro Million überschritten. Die elektrochemische Reduktion von CO2 stellt eine Möglichkeit dar, dieses schädliche Gas aus der Atmosphäre zu entfernen. Das EU-finanzierte Projekt DimerCat wird mit Metalldimeren dotierte Kohlenstoff-Katalysatoren untersuchen, um eine effiziente Umwandlung von CO2 in Chemikalien und Brennstoffe auf Kohlenstoffbasis zu ermöglichen. Katalysatoren auf Kohlenstoffbasis wurden aufgrund ihrer hohen Selektivität für eine CO-Bildung ausgewählt, während man sich von den dotierten Metalldimeren verspricht, dass sie die CO-CO-Verbindung bevorzugen, sodass C2-Produkte wie Ethen entstehen. Neben der Gestaltung des Katalysators hat das Projekt zum Ziel, zwei weitere erhebliche Herausforderungen bezüglich der Katalysatoren zu bewältigen: ihre Selektivität und die Herstellung in großem Maßstab.


For the first time in human’s history, the level of CO2 in the atmosphere has reached the highest level of 415.26 ppm on May 11, 2019. This results in severe climatic change throughout the world. Electrochemical CO2 reduction can convert this harmful CO2 to value-added carbon-based chemicals and is a carbon-neutral method of storing renewable electricity in the form of chemicals.
This proposal aims to investigate carbon catalysts doped with metal-dimers as catalysts for CO2 reduction to higher-carbon (C2) products. Carbon-based catalysts are selected because of their high selectivity towards CO formation and the doped metal dimers are expected to favor the CO-CO coupling leading to the formation of C2 products. This would emulate the functionality of the nitrogenase enzyme, where V-V dimers are able to catalyze the formation of ethylene and other C2 products. The world-leading expertise of Prof. Magda Titirici (host) and Dr. Ifan Stephens; and the vibrant scientific community and state-of-the-art equipment at Imperial College, provide the perfect environment to successfully host my project despite its challenging nature. The deep expertise I have acquired during my Ph.D. in nanosynthesis and in-situ X-ray absorption spectroscopy of electrocatalysts would strongly complement my hosts’ expertise in carbon synthesis and operando testing. The bottleneck in the catalytic cycle will be identified and addressed. This new fundamental understanding will not only empower the scientific community but also enable the development of efficient electrocatalyst for higher-carbon product formation during CO2 reduction. Secondment will be carried out at Johnson Matthey that would allow us to scale-up the technology, developed at Imperial. Thus, the proposed project will try to solve the three major challenges of catalyst design, selectivity, and scalability and would equip me with scientific, technical and managerial skills to become a leading independent researcher.


€ 212 933,76
South kensington campus exhibition road
SW7 2AZ London
Vereinigtes Königreich

Auf der Karte ansehen

London Inner London — West Westminster
Higher or Secondary Education Establishments
Weitere Finanzmittel
€ 0,00