Descrizione del progetto
Catalizzatori drogati di carbonio favoriscono la trasformazione di CO2 in carburanti e sostanze chimiche
Per la prima volta nella storia umana, i livelli di CO2 nell’atmosfera hanno superato le 415,26 parti per milione nel 2019, secondo i sensori dell’osservatorio di Mauna Loa delle Hawaii. La riduzione elettrochimica di CO2 suggerisce una via alternativa alla rimozione di questo gas nocivo dall’atmosfera. Il progetto DimerCat, finanziato dall’UE, esaminerà i catalizzatori al carbonio drogati con dimeri metallici per la conversione efficiente della CO2 in sostanze chimiche e combustibili a base di carbonio. I catalizzatori a base di carbonio sono scelti per la loro elevata selettività verso la formazione di CO, mentre i dimeri di metallo drogato dovrebbero favorire l’accoppiamento CO-CO, portando alla formazione di prodotti C2 come l’etene. Oltre alla progettazione dei catalizzatori, il progetto mira a superare altre due grandi sfide legate a essi: selezione e produzione su larga scala.
Obiettivo
For the first time in human’s history, the level of CO2 in the atmosphere has reached the highest level of 415.26 ppm on May 11, 2019. This results in severe climatic change throughout the world. Electrochemical CO2 reduction can convert this harmful CO2 to value-added carbon-based chemicals and is a carbon-neutral method of storing renewable electricity in the form of chemicals.
This proposal aims to investigate carbon catalysts doped with metal-dimers as catalysts for CO2 reduction to higher-carbon (C2) products. Carbon-based catalysts are selected because of their high selectivity towards CO formation and the doped metal dimers are expected to favor the CO-CO coupling leading to the formation of C2 products. This would emulate the functionality of the nitrogenase enzyme, where V-V dimers are able to catalyze the formation of ethylene and other C2 products. The world-leading expertise of Prof. Magda Titirici (host) and Dr. Ifan Stephens; and the vibrant scientific community and state-of-the-art equipment at Imperial College, provide the perfect environment to successfully host my project despite its challenging nature. The deep expertise I have acquired during my Ph.D. in nanosynthesis and in-situ X-ray absorption spectroscopy of electrocatalysts would strongly complement my hosts’ expertise in carbon synthesis and operando testing. The bottleneck in the catalytic cycle will be identified and addressed. This new fundamental understanding will not only empower the scientific community but also enable the development of efficient electrocatalyst for higher-carbon product formation during CO2 reduction. Secondment will be carried out at Johnson Matthey that would allow us to scale-up the technology, developed at Imperial. Thus, the proposed project will try to solve the three major challenges of catalyst design, selectivity, and scalability and would equip me with scientific, technical and managerial skills to become a leading independent researcher.
Campo scientifico
- natural scienceschemical sciencescatalysiselectrocatalysis
- natural sciencesphysical sciencesopticsspectroscopyabsorption spectroscopy
- natural scienceschemical sciencesorganic chemistryaliphatic compounds
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsenzymes
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinatore
SW7 2AZ LONDON
Regno Unito