European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Zero-CO2 cement concept evaluated with novel Nuclear Magnetic Resonance (NMR)

Descripción del proyecto

Un método sólido para fabricar cemento sin emisiones de carbono

El cemento es el material artificial existente que más se utiliza, pero también es una enorme fuente de emisiones de CO2. Según los estudios, la producción de cemento representará casi el 25 % de las emisiones de CO2 mundiales en 2025. El proyecto financiado con fondos europeos NMRCement examinará el potencial de un nuevo vidrio de silicato para reducir la huella de carbono de la producción de cemento. Los investigadores estudiarán a fondo la reactividad ajustable y las separaciones de fase a nanoescala del material. Se empleará microscopia electrónica de barrido para obtener imágenes de las separaciones de fase. Para investigar la estructura química de las moléculas, los científicos emplearán técnicas avanzadas de resonancia magnética nuclear (RMN, en inglés NMR) capaces de mejorar la sensibilidad y la resolución temporal en varios órdenes de magnitud en comparación con la tecnología de RMN actual.

Objetivo

The production of cement is predicted to account for 25% of anthropogenic CO2 emissions by 2025. There is a need to produce novel reduced CO2 cement materials to reduce global carbon emissions. This project aims to characterise a novel silicate glass material for the production of reduced CO2 cement. The novel silicate glass utilises nanoscale phase separations to enhance the reactivity. The goal of this work is two fold: first, to systematically study the tuneability of the reactivity and nanoscale phase separations in the silicate glass and second, to characterise the glass and cement samples with advanced nuclear magnetic resonance (NMR) methods. First, enhanced reactivity of glasses has previously been observed but has not been systematically studied. The composition of the silicate glass will be changed to study the tuneability of the reactivity and phase separations. The studies will be conducted using standard experiments such as solid state NMR for studying the chemical bonding and scanning electron microscopy (SEM) for visualising phase separations. The results of these studies will contribute to knowledge in glass science and produce a reduced CO2 cement material. Second, the glass and cement will be studied with advanced NMR methods. NMR is a research tool that has previously proven successful in studying the pore structures of glasses and cements. This proposal will utilise breakthroughs in NMR technology, ultrafast Laplace NMR (LNMR) and hyperpolarisaton, to gain further insight into the microstructure of samples. Ultrafast LNMR enhances the time sensitivity of LNMR scans by 2-4 magnitudes and reduces scan time by 1-2 orders of magnitude. Hyperpolarisation enhances the sensitivity of NMR scans by 2-5 orders of magnitude. Together these methods will be used to enhance the time resolution and sensitivity of NMR methods. The results of these studies will produce new NMR methodology and provide novel data in glass and cement samples.

Coordinador

OULUN YLIOPISTO
Aportación neta de la UEn
€ 190 680,96
Dirección
PENTTI KAITERAN KATU 1
90014 Oulu
Finlandia

Ver en el mapa

Región
Manner-Suomi Pohjois- ja Itä-Suomi Pohjois-Pohjanmaa
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 190 680,96