Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Goal-directed learning of the statistical structure of the environment

Descripción del proyecto

La recompensa en decisiones humanas basadas en la estadística

Los humanos y otros animales necesitan aprender a condensar sus estímulos sensoriales de forma eficaz: guiados por las regularidades estadísticas y las recompensas del entorno. Estudios recientes en psicología y neurociencia muestran que las señales de recompensa modulan adecuadamente las representaciones aprendidas. Sin embargo, dichas representaciones determinan cómo podemos reconocer objetos y conceptos, y sigue sin conocerse la influencia indirecta de la recompensa sobre ello. Con la hipótesis de que los humanos utilizan recursos computacionales limitados para dirigir las representaciones aprendidas hacia su utilidad a fin de obtener una recompensa, RELEARN propone un modelo matemático que integra el aprendizaje por refuerzo y el aprendizaje representativo y probabilístico. Pondremos a prueba predicciones neuronales y conductuales en experimentos donde las personas aprenderán a obtener recompensas basadas en características estadísticas de un entorno simulado.

Objetivo

Learning the statistical buildup of the environment serves the purpose of making good decisions, thus what regularities humans learn and what ones they neglect depends on the relevance towards maximizing reward. Recent studies characterise reward-based modulation of feature representations built by humans and animals both on the behavioural and neural level, but the effect of reward on learning higher-order environmental statistics is unknown. Our hypothesis is that humans do not learn to represent feature co-occurrence statistics if it does not help to predict reward due to resource constraints on computation and storage. We propose a mathematical framework based on Bayesian hierarchical modelling and reinforcement learning to predict the modulatory effect of reward on learned representations. We will test the predictions of the model in a series of experiments where humans need to learn to associate precisely controlled statistical aspects of a naturalistic simulated environment to reward both in the lab and online, in reactive and planning-based tasks. Additional to behaviour, the model will predict the structure of neural representations and their changes over the course of the experiment as well. We will test those predictions using magnetoencephalography during the learning phase of the experiments and decoding analysis to compare model variables to neural responses. The results will contribute to the understanding of representational learning in humans, with potential implications in psychiatry and economics as well as supply the community with novel analytical tools and data. The unique mentoring at the host institution together with the extensive training program including international visits to world-leading collaborators will establish my independent research program in computational neuroscience.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2019

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 174 806,40
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 174 806,40
Mi folleto 0 0