Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Goal-directed learning of the statistical structure of the environment

Projektbeschreibung

Die Rolle der Belohnung bei statistisch basierten Entscheidungen des Menschen

Menschen und Tiere müssen lernen, die auf sie einströmenden sensorischen Reize effizient zu komprimieren. Dabei lassen sie sich zum einen von den statistischen Regelmäßigkeiten der Umwelt und zum anderen von der durch sie gebotenen Belohnung leiten. Jüngste psychologische und neurowissenschaftliche Studien zeigen, dass Belohnungssignale die erlernten Repräsentationen modulieren. Diese Repräsentationen bestimmen darüber, wie wir Objekte und Konzepte erkennen. Noch ist allerdings unklar, inwieweit Belohnungen darauf indirekt Einfluss nehmen. Das Projekt RELEARN geht von der Hypothese aus, dass Menschen beschränkte Ressourcen für Berechnungsvorgänge darauf verwenden, erlernte Repräsentationen zur Erlangung von Belohnungen einzusetzen, und schlägt basierend darauf ein mathematisches Modell vor, das Verstärkungslernen und probabilistisches Repräsentationslernen integriert. Die Forschenden werden Prognosen zum Verhalten und den neuronalen Antworten in verschiedenen Experimenten testen, bei denen Versuchspersonen Lernvorgänge zu den statistischen Aspekten einer simulierten Umwelt durchlaufen müssen, um Belohnungen zu erhalten.

Ziel

Learning the statistical buildup of the environment serves the purpose of making good decisions, thus what regularities humans learn and what ones they neglect depends on the relevance towards maximizing reward. Recent studies characterise reward-based modulation of feature representations built by humans and animals both on the behavioural and neural level, but the effect of reward on learning higher-order environmental statistics is unknown. Our hypothesis is that humans do not learn to represent feature co-occurrence statistics if it does not help to predict reward due to resource constraints on computation and storage. We propose a mathematical framework based on Bayesian hierarchical modelling and reinforcement learning to predict the modulatory effect of reward on learned representations. We will test the predictions of the model in a series of experiments where humans need to learn to associate precisely controlled statistical aspects of a naturalistic simulated environment to reward both in the lab and online, in reactive and planning-based tasks. Additional to behaviour, the model will predict the structure of neural representations and their changes over the course of the experiment as well. We will test those predictions using magnetoencephalography during the learning phase of the experiments and decoding analysis to compare model variables to neural responses. The results will contribute to the understanding of representational learning in humans, with potential implications in psychiatry and economics as well as supply the community with novel analytical tools and data. The unique mentoring at the host institution together with the extensive training program including international visits to world-leading collaborators will establish my independent research program in computational neuroscience.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-IF-2019

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 174 806,40
Adresse
HOFGARTENSTRASSE 8
80539 MUNCHEN
Deutschland

Auf der Karte ansehen

Region
Bayern Oberbayern München, Kreisfreie Stadt
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 174 806,40
Mein Booklet 0 0