Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

DeepZyme: Learning Deep Representations of Enzymes for Predicting Catalytically-Beneficial Mutations

Description du projet

Prédire les mutations bénéfiques pour l’activité enzymatique

Les enzymes sont de grands catalyseurs qui accélèrent considérablement la vitesse des réactions chimiques complexes en conditions physiologiques. Il sera bénéfique pour la médecine et la biotechnologie de comprendre comment concevoir des enzymes, afin de maximiser leur fonction. Le projet DeepZyme, financé par l’UE, propose d’aborder cette question par le biais d’un modèle pouvant prédire l’impact des modifications enzymatiques telles que les mutations. Ce modèle utilisera des techniques d’apprentissage profond, afin d’évaluer les informations sur la séquence, la structure et l’activité catalytique enzymatique. En exploitant le potentiel de la pression de sélection imposée aux enzymes au cours de l’évolution, le projet vise à affiner les propriétés des enzymes importantes.

Objectif

During the course of evolution nature has created and optimized extraordinary protein catalysts, named enzymes, that are fundamental in all reigns of life. Enzymes facilitate complex chemical reactions at physiological conditions, accelerating their rates by several orders of magnitude and being highly selective over alternative –undesired– chemical transformations. Understanding how enzymes work and how to engineer their functions is essential for many disciplines, with applications ranging from medical therapies to biotechnological devices. The main challenge towards the rational control of enzymes is that given their complexity, it is not trivial to predict modifications –known as mutations– that are beneficial for their activity.
The DeepZyme project aims to develop a model for the prediction of such modifications, taking advantage of revolutionary techniques in the field of deep learning. We propose to obtain condensed “representations” of enzymes by leveraging their sequence, structure and catalytic information. These representations can be suitably designed to describe enzymatic information that is available in nature, and learn how enzymes have been tuned by selection pressures along evolution. Navigating in the space of enzyme representations will allow us to finely tune their properties, and thereby guide a rational design process. Our model will be used together with other state-of-the-art techniques (including molecular dynamics, Markov state models and quantum mechanics / molecular mechanics) to generate from scratch an enzyme able to catalyze chemical reactions along the synthesis of drug-like molecules.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2019

Voir tous les projets financés au titre de cet appel

Coordinateur

FREIE UNIVERSITAET BERLIN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 162 806,40
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 162 806,40
Mon livret 0 0