Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Exploring thioalkynes potential in gold catalysis with a divergent reactivity manifold

Project description

As good as gold – actually, even better: enhanced gold catalysis

Synthetic chemists are the masterminds behind the enormous variety of chemicals that make possible products ranging from pharmaceuticals to photovoltaics. Catalysis is a critical enabler for effective and sustainable reactions to make valuable chemicals. Gold has become a widely used metal in catalysis, in particular for its ability to access potent species called carbenes. These highly reactive and unstable carbon atoms are key intermediates that are important building blocks for other molecules. Controlling the formation and reactivity of these carbenes remains a significant challenge. The EU-funded THIODIV project is investigating the potential of sulfur to control gold catalysis so it can do its job more efficiently, opening the door to the simplified synthesis of many different molecules.

Objective

THIODIV brings together the complementary expertise of Dr Nagnath More (NM, expertise in oxidative reactions and arylation processes) with Dr Paul Davies (Host, expertise in gold catalysis and sulfur-based reaction development).
Gold catalysis attract significant international interest due to its ability to generate metal carbene character from alkynes delivering more sustainable synthesis. Current strategies to address the major challenge of site-selective carbene formation use terminal alkynes, or those with strongly electron-donating- or electron-withdrawing groups. Limitations derive from the gold carbenes environment and its impact on reactivity, or the incorporation of undesired directing groups. THIODIV will study the potential of sulfur-substitution to deliver complementary directing effects while introducing a desirable functional group into the resulting molecule. Preliminary studies show that sulfur can enable gold-catalysed reactivity, yet propose different directing-modes which lead to different regiocontrol. The overall aim of THIODIV is to examine the role of sulfur substitution on alkynes in gold catalysis and clarify its influence on reactivity, and hence allow wider application of sulfur-directing groups in gold catalysis and synthesis more widely.
A diversity-generating dynamic reaction manifold will be used to elucidate key control parameters by studying two approaches, an oxidative rearrangement, and an arylative rearrangement. Alongside insight into reaction control and directing effects, THIODIV will provide new and efficient access to motifs that are featured in numerous bioactive compounds and are highly desirable in industry and academia as synthetic intermediates. While addressing fundamental questions of reactivity and control, THIODIV will also equip NM with the skills to incorporate hit- and lead-like properties into structure-reactivity studies to deliver new molecular entities that are applicable in pharmaceutical discovery.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

THE UNIVERSITY OF BIRMINGHAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 224 933,76
Address
Edgbaston
B15 2TT Birmingham
United Kingdom

See on map

Region
West Midlands (England) West Midlands Birmingham
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 224 933,76
My booklet 0 0