Project description
New approaches to describing the zeros of random polynomials
Random polynomials have been of interest to physicists as they can describe the behaviour of Coulomb gases or certain Bose gases with very high accuracy. The EU-funded RandPol project aims to study the zeros of random polynomials – one of the oldest and most fundamental problems in mathematics. Classic problems that arise on the macroscopic scale are the following: Where can zeros be located? Are there comprehensive descriptions of the behaviour of isolated zeros? Researchers are also interested in understanding the behaviour of random polynomials on the microscopic scale. Specifically, RandPol will link the local repartition of the zeros and the interaction between neighbouring zeros with renormalised energy, which is key to describing the local behaviour of particles in a Coulomb gas.
Objective
The aim of this project is to study the zeros of random polynomials. Random polynomials appeared in the 1930's with the pioneering works of Bloch, Polya and Kac. The study of random polynomials gained a strong interest of the physicists since the 1990's due to their connexion with interaction particle systems such as electron gases (also called Coulomb gases). Random polynomials were first considered as a toy model for more complicated systems, but in the 2000's they appeared to exactly describe the behavior of certain Bose Gases.
We want to understand the behavior of random polynomials at the macroscopic and microscopic scale. At the macroscopic scale, several questions naturally arise: Where can we locate the zeros? Are there isolated zeros far away from the rest of them? Can we describe the behavior of those isolated zeros?
Very recent breakthrough (2019) were made in both localisation and isolated zeros for specific models of random pomynomials with some symmetry constraints. Our goal is to obtain general results on these questions. We plan to develop new ideas to tackle these questions, without relying on the symmetry structure.
At the microscopic scale, we want to understand the local repartition of the zeros and the interaction between neighboors. This question lead to adapt concepts from mathematical physics such as the microscopic renormalized energy to the study of zeros of random polynomials. Recent studies also linked the local behavior of zeros of random polynomials to the zeros of Random Analytic Functions, which have a lot of connexions to several domains in mathematics (Analysis, Image processing, random matrix theory, mathematical physiqucs).
The concept of renormaliazed energy is very recent (2017), and was introduced by Leblé and Serfaty to understand the local behavior of particles from a Coulomb gas. We think that this approach can lead to a new understanding of the behavior of zeros of random polynomials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1211 Geneve
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.