Descrizione del progetto
Nuovi approcci per descrivere gli zero dei polinomi casuali
I polinomi casuali catturano l’interesse dei fisici in quanto sono in grado di descrivere con estrema precisione il comportamento dei gas di Coulomb o di determinati gas di Bose. Il progetto RandPol, finanziato dall’UE, si propone di studiare gli zero dei polinomi casuali, uno dei problemi matematici più antichi e cruciali. I problemi classici che emergono su scala macroscopica sono i seguenti: dove si possono trovare gli zero? Esistono descrizioni complete del comportamento degli zero isolati? Inoltre, i ricercatori sono interessati a comprendere il comportamento dei polinomi casuali su scala microscopica. In particolare, il progetto RandPol collegherà la ripartizione locale degli zero e l’interazione tra zero vicini con l’energia rinormalizzata, il che è fondamentale per descrivere il comportamento locale delle particelle in un gas di Coulomb.
Obiettivo
The aim of this project is to study the zeros of random polynomials. Random polynomials appeared in the 1930's with the pioneering works of Bloch, Polya and Kac. The study of random polynomials gained a strong interest of the physicists since the 1990's due to their connexion with interaction particle systems such as electron gases (also called Coulomb gases). Random polynomials were first considered as a toy model for more complicated systems, but in the 2000's they appeared to exactly describe the behavior of certain Bose Gases.
We want to understand the behavior of random polynomials at the macroscopic and microscopic scale. At the macroscopic scale, several questions naturally arise: Where can we locate the zeros? Are there isolated zeros far away from the rest of them? Can we describe the behavior of those isolated zeros?
Very recent breakthrough (2019) were made in both localisation and isolated zeros for specific models of random pomynomials with some symmetry constraints. Our goal is to obtain general results on these questions. We plan to develop new ideas to tackle these questions, without relying on the symmetry structure.
At the microscopic scale, we want to understand the local repartition of the zeros and the interaction between neighboors. This question lead to adapt concepts from mathematical physics such as the microscopic renormalized energy to the study of zeros of random polynomials. Recent studies also linked the local behavior of zeros of random polynomials to the zeros of Random Analytic Functions, which have a lot of connexions to several domains in mathematics (Analysis, Image processing, random matrix theory, mathematical physiqucs).
The concept of renormaliazed energy is very recent (2017), and was introduced by Leblé and Serfaty to understand the local behavior of particles from a Coulomb gas. We think that this approach can lead to a new understanding of the behavior of zeros of random polynomials.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-IF-2019
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
1211 Geneve
Svizzera
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.