Project description
Your next wrist accessory may count more than the steps you take
Technologies to detect single molecules have progressed tremendously in recent years. Rather than looking at an ensemble average over time in which fluctuations and details are smoothed and potentially even averaged out, following the trajectories of single molecules provides exquisite spatial and temporal details critical to understanding pathways and processes. Harnessing the potential of single-molecule detection in an accurate and cost-effective portable device could revolutionise personalised medicine and diagnosis, monitoring and treatment of disease. Building on their innovations in nanopore sensing technology, machine learning and statistics, scientists working on the EU-funded PoreDetect project plan to deliver just such a system. Beyond the critically important realm of a wearable device for real-time tracking of disease markers, the technology could find important application in a handheld system for environmental monitoring.
Objective
The fast and reliable detection of single molecules holds the promise of revolutionising diagnostics, disease prevention as well as biological research by offering unprecedented resolution compared to bulk approaches. Based on work done as part of the ‘DesignerPore’ ERC consolidator grant (Nature Nanotechnology 2016) we will develop a benchtop device capable of detecting hundreds of molecular targets within tens of minutes. We will combine our recent development in nanopore sensing technology (JACS 2015) with machine-learning (Nano Letters 2018) and advanced statistics (arxiv 2019) to create a new versatile single molecule technique. Ultimately, our PoreDetect technology has the potential to become an integral part of handheld or wearable devices allowing real time tracking of disease markers for personalised medicine, bacterial infections or environmental contaminants. While the technique is not limited to the detection of certain molecules, for this proof-of-concept we aim to focus on sensing short oligonucleotides tens of base pairs in length, with immediate applications in the quantification of cell-free (cfRNA) and microRNA (miRNA) as cancer biomarkers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences internet internet of things
- engineering and technology nanotechnology
- medical and health sciences clinical medicine oncology
- medical and health sciences health sciences personalized medicine
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.