Project description
Probing electron correlation dynamics in two-dimensional materials
Two-dimensional (2D) materials present exotic quantum phases of matter – unconventional superconductivity, novel insulating phases and exotic magnetic order. These phenomena can be leveraged to create new forms of energy-efficient technologies. Fundamental understanding and exploration of 2D materials hinge on the ability to study electron–electron interactions. Electron correlations are the key driving forces behind these exotic quantum phases. The EU-funded DeQ project will investigate the role of electron correlations and their interplay with structural and spin degrees of freedom at the single-atom level in insulating quantum phases of novel 2D materials. The project will quantify atomic-scale charge and spin order at transitions between different quantum phases in three classes of hallmark 2D materials: twisted bilayers, correlated quasi-2D compounds and 2D magnetic materials.
Objective
Quantum phases of matter in novel 2D materials host fascinating correlated electron properties, such as unconventional superconductivity, novel insulating phases and exotic magnetic order. These phenomena are a hotbed of new forms of energy-efficient technologies, which require fundamental understanding and exploration of these material classes. Since the beginning, scientists have been struggling with the puzzling lack of consistent predictability of such materials, leading predominantly to serendipitous discoveries. The key ingredient driving these exotic quantum phases are electron-electron interactions, so-called correlations. These correlations between the electrons play a prominent role in their movement, and often result into atomic-scale charge and spin order, and are amplified in 2D materials compared to their 3D counterparts. Owing to the 2D nature, a new state-of-the-art methodology is needed to elucidate the electronic and magnetic properties in correlated 2D quantum materials. DeQ investigates the role of electron correlations and their interplay with structural and spin degrees of freedom at the single-atom level in insulating quantum phases of novel 2D materials. To accomplish this aim, my innovative strategy is to quantify atomic-scale charge and spin order at transitions between different quantum phases in three classes of hallmark 2D materials: twisted bilayers, correlated quasi-2D compounds, and 2D magnetic materials. My novel approach is based on creating a new state of the art in atomic imaging and spectroscopy, the JAQ setup. The development of JAQ will enable us to precisely tune relevant parameters, like electric and magnetic fields, in the highest-quality materials available. The outcome of DeQ will be groundbreaking for predicting electron correlations in novel quantum phases in 2D materials, which that are a hotbed of innovative forms of energy-efficient technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6525 XZ Nijmegen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.