Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Reliable and cost-effective large scale machine learning

Project description

Powering the brains behind the machine

Machine learning algorithms are the brains allowing machines to learn from data and make improvements automatically, and without any human interventions. Machines are imitating and adapting, offering solutions across many sectors – from security to healthcare and from manufacturing to marketing. But with data growing exponentially, machine learning needs to keep pace in terms of cost-effectiveness and reliability. Against this background, the EU-funded REAL project will extend the classical machine learning framework to provide algorithms that can guarantee reliable predictions with the minimum possible computational resources. This will be tested on key benchmarks from computer vision, natural language processing and bioinformatics.

Objective

In the last decade, machine learning (ML) has become a fundamental tool with a growing impact in many disciplines, from science to industry. However, nowadays, the scenario is changing: data are exponentially growing compared to the computational resources (post Moore's law era), and ML algorithms are becoming crucial building blocks in complex systems for decision making, engineering, science. Current machine learning is not suitable for the new scenario, both from a theoretical and a practical viewpoint: (a) the lack of cost-effectiveness of the algorithms impacts directly the economic/energetic costs of large scale ML, making it barely affordable by universities or research institutes; (b) the lack of reliability of the predictions affects critically the safety of the systems where ML is employed. To deal with the challenges posed by the new scenario, REAL will lay the foundations of a solid theoretical and algorithmic framework for reliable and cost-effective large scale machine learning on modern computational architectures. In particular, REAL will extend the classical ML framework to provide algorithms with two additional guarantees: (a) the predictions will be reliable, i.e. endowed with explicit bounds on their uncertainty guaranteed by the theory; (b) the algorithms will be cost-effective, i.e. they will be naturally adaptive to the new architectures and will provably achieve the desired reliability and accuracy level, by using minimum possible computational resources. The algorithms resulting from REAL will be released as open-source libraries for distributed and multi-GPU settings, and their effectiveness will be extensively tested on key benchmarks from computer vision, natural language processing, audio processing, and bioinformatics. The methods and the techniques developed in this project will help machine learning to take the next step and become a safe, effective, and fundamental tool in science and engineering for large scale data problems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-STG

See all projects funded under this call

Host institution

UNIVERSITA COMMERCIALE LUIGI BOCCONI
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 438 891,46
Address
VIA SARFATTI 25
20136 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 438 891,46

Beneficiaries (2)

My booklet 0 0