Opis projektu
Inteligentne maszyny i ich wymagania
Algorytmy uczenia maszynowego zapewniają urządzeniom możliwość uczenia się na podstawie danych oraz automatyczne usprawnianie swojego działania bez udziału człowieka. Maszyny naśladują i zmieniają swoje zachowanie, a tego rodzaju rozwiązania zyskują coraz większą popularność w kolejnych sektorach, od bezpieczeństwa i marketingu po opiekę zdrowotną i produkcję. Geometryczny przyrost ilości danych oznacza jednak, że same algorytmy uczenia maszynowego muszą dotrzymać mu kroku pod względem efektywności kosztowej i niezawodności. Wiedzą o tym członkowie zespołu finansowanego przez Unię Europejską projektu REAL, którzy zamierzają rozszerzyć klasyczne ramy uczenia maszynowego, tak by umożliwiały przygotowywanie algorytmów gwarantujących niezawodne prognozy przy wykorzystaniu jak najmniejszych możliwych zasobów obliczeniowych. Opracowane rozwiązania zostaną przetestowane w kilku scenariuszach obejmujących rozpoznawanie obrazów, przetwarzanie języka naturalnego i bioinformatykę.
Cel
In the last decade, machine learning (ML) has become a fundamental tool with a growing impact in many disciplines, from science to industry. However, nowadays, the scenario is changing: data are exponentially growing compared to the computational resources (post Moore's law era), and ML algorithms are becoming crucial building blocks in complex systems for decision making, engineering, science. Current machine learning is not suitable for the new scenario, both from a theoretical and a practical viewpoint: (a) the lack of cost-effectiveness of the algorithms impacts directly the economic/energetic costs of large scale ML, making it barely affordable by universities or research institutes; (b) the lack of reliability of the predictions affects critically the safety of the systems where ML is employed. To deal with the challenges posed by the new scenario, REAL will lay the foundations of a solid theoretical and algorithmic framework for reliable and cost-effective large scale machine learning on modern computational architectures. In particular, REAL will extend the classical ML framework to provide algorithms with two additional guarantees: (a) the predictions will be reliable, i.e. endowed with explicit bounds on their uncertainty guaranteed by the theory; (b) the algorithms will be cost-effective, i.e. they will be naturally adaptive to the new architectures and will provably achieve the desired reliability and accuracy level, by using minimum possible computational resources. The algorithms resulting from REAL will be released as open-source libraries for distributed and multi-GPU settings, and their effectiveness will be extensively tested on key benchmarks from computer vision, natural language processing, audio processing, and bioinformatics. The methods and the techniques developed in this project will help machine learning to take the next step and become a safe, effective, and fundamental tool in science and engineering for large scale data problems.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
ERC-STG - Starting Grant
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2020-STG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
20136 Milano
Włochy
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.