Project description
Novel causal methods for climate data analysis and climate model evaluation
What are the interdependencies of El Nino–Southern Oscillation and the North Atlantic Oscillation? The answer to this question may improve our understanding of regional climate and facilitate a process-based climate model evaluation for future climate projections. The EU-funded CausalEarth project will develop novel statistical causal inference methods for both observations and model data. It will address the limitations of today’s observational analyses that are based mainly on the correlation of scalar (one-dimensional) time series derived from regional averaging and limited to supposed causal regimes. By combining advancements in machine learning with causal inference algorithms, CausalEarth will develop innovative methods to determine causal relationships among complex spatio-temporal phenomena.
Objective
CausalEarth is an interdisciplinary project, aiming to improve our understanding of the interdependencies between major drivers (modes) of climate variability by developing novel statistical causal inference methods for both observations and model data.
Disentangling the interdependencies of the major modes, such as El Nino Southern Oscillation and the North Atlantic Oscillation, is key to understand regional climate, and essential for process-based climate model evaluation. The modes' interdependencies are characterized by common drivers, indirect effects, nonlinearities, regime-dependence, and heterogeneous spatio-temporal causal relations. Currently, observational analyses are mostly based on the correlation of scalar (one-dimensional) time series derived from regional averaging or principal component analysis, restricted to supposed causal regimes, e.g. the winter season or phases of multi-decadal climate indices, where dependencies are expected to be stationary. Such scalar correlation approaches fall short in capturing the modes' complex regime-dependent spatio-temporal causal interdependencies.
CausalEarth will develop innovative methods to move (1) from representing complex phenomena as scalar indices to learning spatio-temporal features, (2) from supposing causal regimes to learning them from data, and (3) from correlation to causal dependencies. To this end, CausalEarth will combine recent developments in machine learning with causal inference algorithms.
These methods will be used to infer the causal interdependencies and drivers of major climate modes from observations and to construct the next generation of causal metrics for climate model evaluation.
CausalEarth will push the limits of what can be learned from observational data about causal relations and drive model development towards breakthroughs in projecting our future climate.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
14469 Potsdam
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.