Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Expectational Visual Artificial Intelligence

Description du projet

Créer la prochaine génération d’algorithmes visuels pertinents

La prochaine génération d’algorithmes visuels devrait pouvoir anticiper l’avenir à partir d’observations visuelles passées stockées sous forme de données. L’intelligence artificielle visuelle devra également être capable d’éviter les faits, plutôt que d’apporter des explications a posteriori. Le projet EVA, financé par l’UE, vise à élaborer des algorithmes qui apprendront à anticiper des avenirs possibles à partir de séquences visuelles. Le principal défi est d’obtenir des algorithmes visuels qui apprennent la temporalité sous forme de séquences visuelles. EVA abordera des problèmes de la recherche fondamentale dans l’interprétation automatique de séquences visuelles futures. Les résultats du projet serviront de base à des avancées technologiques révolutionnaires ayant des applications visuelles pratiques.

Objectif

Visual artificial intelligence automatically interprets what happens in visual data like videos. Todays research strives with queries like: Is this person playing basketball?; Find the location of the brain stroke; or Track the glacier fractures in satellite footage. All these queries are about visual observations already taken place. Todays algorithms focus on explaining past visual observations. Naturally, not all queries are about the past: Will this person draw something in or out of their pocket?; Where will the tumour be in 5 seconds given breathing patterns and moving organs?; or How will the glacier fracture given the current motion and melting patterns?. For these queries and all others, the next generation of visual algorithms must expect what happens next given past visual observations. Visual artificial intelligence must also be able to prevent before the fact, rather than explain only after it. I propose an ambitious 5-year project to design algorithms that learn to expect the possible futures from visual sequences.

The main challenge for expecting possible futures is having visual algorithms that learn temporality in visual sequences. Todays algorithms cannot do this convincingly. First, they are time-deterministic and ignore uncertainty, part of any expected future. I propose time-stochastic visual algorithms. Second, todays algorithms are time-extrinsic and treat time as an external input or output variable. I propose time-intrinsic visual algorithms that integrate time within their latent representations. Third, visual algorithms must account for all innumerable spatiotemporal dynamics, despite their finite nature. I propose time-geometric visual algorithms that constrain temporal latent spaces to known geometries.

EVA addresses fundamental research issues in the automatic interpretation of future visual sequences. Its results will serve as a basis for ground-breaking technological advances in practical vision applications.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

UNIVERSITEIT VAN AMSTERDAM
Contribution nette de l'UE
€ 1 499 562,00

Bénéficiaires (1)