Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Expectational Visual Artificial Intelligence

Descrizione del progetto

Dare origine alla prossima generazione di algoritmi visivi lungimiranti

La prossima generazione di algoritmi visivi dovrà prevedere il futuro sulla base di osservazioni visive passate memorizzate come dati. Inoltre, l’intelligenza artificiale visiva dovrà essere in grado di prevenire gli eventi anziché spiegarli dopo che si sono verificati. Il progetto EVA, finanziato dall’UE, ha l’obiettivo di progettare algoritmi che imparano a prevedere possibili scenari futuri dalle sequenze visive. La sfida principale consiste nell’avere algoritmi visivi che imparano la temporalità nelle sequenze visive. EVA farà i conti con problemi di ricerca fondamentali presenti nell’interpretazione automatica delle sequenze visive future. I risultati ottenuti dal progetto fungeranno da base per progressi tecnologici rivoluzionari nelle applicazioni di visione pratiche.

Obiettivo

Visual artificial intelligence automatically interprets what happens in visual data like videos. Todays research strives with queries like: Is this person playing basketball?; Find the location of the brain stroke; or Track the glacier fractures in satellite footage. All these queries are about visual observations already taken place. Todays algorithms focus on explaining past visual observations. Naturally, not all queries are about the past: Will this person draw something in or out of their pocket?; Where will the tumour be in 5 seconds given breathing patterns and moving organs?; or How will the glacier fracture given the current motion and melting patterns?. For these queries and all others, the next generation of visual algorithms must expect what happens next given past visual observations. Visual artificial intelligence must also be able to prevent before the fact, rather than explain only after it. I propose an ambitious 5-year project to design algorithms that learn to expect the possible futures from visual sequences.

The main challenge for expecting possible futures is having visual algorithms that learn temporality in visual sequences. Todays algorithms cannot do this convincingly. First, they are time-deterministic and ignore uncertainty, part of any expected future. I propose time-stochastic visual algorithms. Second, todays algorithms are time-extrinsic and treat time as an external input or output variable. I propose time-intrinsic visual algorithms that integrate time within their latent representations. Third, visual algorithms must account for all innumerable spatiotemporal dynamics, despite their finite nature. I propose time-geometric visual algorithms that constrain temporal latent spaces to known geometries.

EVA addresses fundamental research issues in the automatic interpretation of future visual sequences. Its results will serve as a basis for ground-breaking technological advances in practical vision applications.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Meccanismo di finanziamento

ERC-STG - Starting Grant

Istituzione ospitante

UNIVERSITEIT VAN AMSTERDAM
Contributo netto dell'UE
€ 1 499 562,00
Costo totale
€ 1 499 562,00

Beneficiari (1)