Descripción del proyecto
Sentar las bases de la teoría de la representación de los grupos p-ádicos
La teoría de la representación estudia estructuras algebraicas abstractas al interpretar sus elementos como transformaciones lineales de espacios vectoriales e investiga cómo funcionan en espacios vectoriales. Uno de los principales problemas de esta teoría es la construcción de todos los tipos de representación (irreducibles, suaves, complejas) de ciertos grupos matriciales denominados «grupos p-ádicos». A pesar de los grandes avances en este ámbito realizados en los últimos cuarenta años, es sorprendente lo poco que se sabe sobre estas representaciones en el marco general. Los sistemas numéricos p-ádicos desempeñan un papel esencial en la teoría de números y en otras áreas de las matemáticas, ya que proporcionan una amplia gama de situaciones para examinar cuestiones relacionadas con los números racionales. El objetivo del proyecto GReatLaP, financiado con fondos europeos, es construir todas las representaciones con total generalidad. A continuación, se ampliará la teoría de la representación de los grupos p-ádicos al estudio del programa de Langlands general y relativo.
Objetivo
My objectives consist of laying new foundations for the representation theory of p-adic groups and making significant progress on the local, global and relative Langlands program.
The Langlands program is a far-reaching collection of conjectures that relate different areas of mathematics including number theory and representation theory. Work in this area has also lead to the resolution of other major conjectures including Fermat's Last Theorem.
A fundamental problem on the representation theory side is the construction of all (irreducible, smooth, complex) representations of certain matrix groups, called p-adic groups. Despite much progress in the past 40 years, we still know surprisingly little about these representations in the general setting. My first main objective is the construction of all (supercuspidal) representations in full generality. This will form the foundation for the future of the representation theory of p-adic groups and have a plethora of applications also beyond this area. Solving this problem will involve tackling all the complications that arise in the non-tame case compared to the tame case.
I will then demonstrate the power of this result beyond the representation theory of p-adic groups by making significant contributions to the
- global Langlands program. This will be achieved by constructing congruences between automorphic forms based on the existence of enough suitable (omni-)supercuspidal types for p-adic groups.
- relative Langlands program. I will prove finite multiplicity of the representations occurring in the space of function on a spherical variety by combining my results about the shape of representations with properties of the moment map.
Finally, I will use my insights to advance the explicit local Langlands correspondence by proving that the most-general construction to date, which treats non-singular representations, satisfies all required properties and suggesting a correspondence beyond non-singular representations.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2020-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
53113 BONN
Alemania
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.