Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

p-adic Groups, Representations, and the Langlands Program

Projektbeschreibung

Schaffung der Grundlagen für die Darstellungstheorie p-adischer Gruppen

Die Darstellungstheorie untersucht abstrakte algebraische Strukturen, indem sie ihre Elemente als lineare Transformationen von Vektorräumen darstellt, und erkundet, wie diese auf Vektorräume wirken. Ein grundlegendes Problem dieser Theorie besteht in der Konstruktion aller Darstellungstypen (irreduzibel, glatt, komplex) bestimmter Matrixgruppen, der sogenannten p-adischen Gruppen. Ungeachtet der in den vergangenen 40 Jahren auf diesem Gebiet erzielten großen Fortschritte ist erstaunlich wenig über diese Darstellungen im allgemeinen Rahmen bekannt. Die p-adischen Zahlensysteme spielen in der Zahlentheorie und weiteren Bereichen der Mathematik eine fundamentale Rolle und bieten eine Vielzahl von Möglichkeiten, um nach Antworten auf Fragen in Bezug auf rationale Zahlen zu suchen. Das EU-finanzierte Projekt GReatLaP verfolgt das Ziel, alle Darstellungen in voller Allgemeinheit zu konstruieren. Das Projekt wird im Folgenden die Darstellungstheorie p-adischer Gruppen auf die Untersuchung des globalen und relativen Langlands-Programms ausweiten.

Ziel

My objectives consist of laying new foundations for the representation theory of p-adic groups and making significant progress on the local, global and relative Langlands program.

The Langlands program is a far-reaching collection of conjectures that relate different areas of mathematics including number theory and representation theory. Work in this area has also lead to the resolution of other major conjectures including Fermat's Last Theorem.

A fundamental problem on the representation theory side is the construction of all (irreducible, smooth, complex) representations of certain matrix groups, called p-adic groups. Despite much progress in the past 40 years, we still know surprisingly little about these representations in the general setting. My first main objective is the construction of all (supercuspidal) representations in full generality. This will form the foundation for the future of the representation theory of p-adic groups and have a plethora of applications also beyond this area. Solving this problem will involve tackling all the complications that arise in the non-tame case compared to the tame case.

I will then demonstrate the power of this result beyond the representation theory of p-adic groups by making significant contributions to the
- global Langlands program. This will be achieved by constructing congruences between automorphic forms based on the existence of enough suitable (omni-)supercuspidal types for p-adic groups.
- relative Langlands program. I will prove finite multiplicity of the representations occurring in the space of function on a spherical variety by combining my results about the shape of representations with properties of the moment map.

Finally, I will use my insights to advance the explicit local Langlands correspondence by proving that the most-general construction to date, which treats non-singular representations, satisfies all required properties and suggesting a correspondence beyond non-singular representations.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-STG - Starting Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2020-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 499 491,00
Adresse
REGINA PACIS WEG 3
53113 BONN
Deutschland

Auf der Karte ansehen

Region
Nordrhein-Westfalen Köln Bonn, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 499 491,00

Begünstigte (1)

Mein Booklet 0 0