European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Plasmodesmata, Symplasmic pores for plant cell-to-cell communication

Descripción del proyecto

Tecnologías nuevas para estudiar la comunicación entre células vegetales

Los organismos multicelulares tienen canales para el intercambio de nutrientes y la comunicación entre las células. Las plantas desarrollaron plasmodesmos, conexiones únicas y complejas entre células que atraviesan las paredes celulares. Los plasmodesmos participan en el transporte selectivo de señales, iones, metabolitos, ARN y proteínas. Actualmente, la composición, estructura y regulación de la conductancia de los plasmodesmos no se conocen a la perfección. Sin embargo, las nuevas tecnologías facilitan que se conozcan las funciones de los plasmodesmos en el transporte y la señalización mediante la aplicación de un enfoque interdisciplinario. El proyecto SymPore, financiado con fondos europeos, utilizará tecnologías innovadoras de proteómica de etiquetado de proximidad para obtener la composición de los plasmodesmos y tomografía electrónica para desentrañar su estructura. Dado que los plasmodesmos desempeñan funciones clave en la distribución de nutrientes y la propagación de virus, este proyecto dará lugar a nuevas propuestas biotecnológicas para la agricultura.

Objetivo

During evolution of multicellularity, cells differentiated to become specialized and interdependent. Multicellular organisms invented channels for nutrient exchange and communication between cells. Plants uniquely developed plasmodesmata, complex cell-cell connections traversing the cell wall. Roles ascribed to plasmodesmata include selective transport of signals, ions, metabolites, RNAs and proteins. Due to technical hurdles, composition, structure and regulation of plasmodesmatal conductance remain enigmatic. Genetic approaches to study plasmodesmata were hampered by lethality or redundancy. Novel technologies now set the stage for resolving roles of plasmodesmata in transport and signaling in an interdisciplinary approach. We will use proximity labeling proteomics to obtain plasmodesmatal composition, and PAINT and cryo electron tomography (cryoET) for near atomic structures. Models of plasmodesmata will be built from bottom up and top down approaches and combined with quantitative assessment of plasmodesmatal activity. Novel biosensor approaches together with knock down by genome editing will permit quantitation of transport of the diverse cargo. Single cell sequencing helps fine-tuning mutant selection and targeting of subtypes. Four labs will join forces: highly recognized experts in biophysics and cryoET (WB), advanced imaging and developmental signaling (RS), high-end proteomics and lipidomics (WS), and interactomics, transporters and cutting-edge biosensor technology (WF). We will iteratively address: (1) systematic quantitative identification of components, (2) their localization and dynamics, (3) structures and molecular building blocks of diverse plasmodesmatal types, and (4) transport and signaling mechanisms. We expect breakthrough discoveries and completely new understanding of plasmodesmatal function and evolution. Since plasmodesmata play key roles in nutrient allocation and virus spread, we lay the basis for novel biotech solutions in agriculture.

Régimen de financiación

ERC-SyG - Synergy grant

Institución de acogida

HEINRICH-HEINE-UNIVERSITAET DUESSELDORF
Aportación neta de la UEn
€ 5 470 125,00
Dirección
UNIVERSITAETSSTRASSE 1
40225 Dusseldorf
Alemania

Ver en el mapa

Región
Nordrhein-Westfalen Düsseldorf Düsseldorf, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 5 470 125,00

Beneficiarios (3)