European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Plasmodesmata, Symplasmic pores for plant cell-to-cell communication

Description du projet

Des technologies innovantes pour étudier la communication végétale unique de cellule à cellule

Les organismes multicellulaires disposent de voies d’échange de nutriments et de communication entre les cellules. Les plantes ont développé le plasmodesme, des connexions uniques et complexes de cellule à cellule qui traversent les parois cellulaires. Le plasmodesme est impliqué dans le transport sélectif de signaux, d’ions, de métabolites, d’ARN et de protéines. À l’heure actuelle, la composition, la structure et la régulation de la conductivité du plasmodesme demeurent mal comprises. Des technologies innovantes préparent le terrain pour la résolution du rôle du plasmodesme dans le transport et la signalisation, à l’aide d’une approche interdisciplinaire. Le projet SymPore, financé par l’UE, emploiera des technologies innovantes de protéomique par marquage de proximité pour obtenir la composition du plasmodesme et de tomographie électronique pour élucider sa structure. Dans la mesure où le plasmodesme joue un rôle clé dans l’allocation de nutriments aux plantes et dans la propagation virale, ce projet mettra en œuvre des solutions de biotechnologies innovantes en agriculture.

Objectif

During evolution of multicellularity, cells differentiated to become specialized and interdependent. Multicellular organisms invented channels for nutrient exchange and communication between cells. Plants uniquely developed plasmodesmata, complex cell-cell connections traversing the cell wall. Roles ascribed to plasmodesmata include selective transport of signals, ions, metabolites, RNAs and proteins. Due to technical hurdles, composition, structure and regulation of plasmodesmatal conductance remain enigmatic. Genetic approaches to study plasmodesmata were hampered by lethality or redundancy. Novel technologies now set the stage for resolving roles of plasmodesmata in transport and signaling in an interdisciplinary approach. We will use proximity labeling proteomics to obtain plasmodesmatal composition, and PAINT and cryo electron tomography (cryoET) for near atomic structures. Models of plasmodesmata will be built from bottom up and top down approaches and combined with quantitative assessment of plasmodesmatal activity. Novel biosensor approaches together with knock down by genome editing will permit quantitation of transport of the diverse cargo. Single cell sequencing helps fine-tuning mutant selection and targeting of subtypes. Four labs will join forces: highly recognized experts in biophysics and cryoET (WB), advanced imaging and developmental signaling (RS), high-end proteomics and lipidomics (WS), and interactomics, transporters and cutting-edge biosensor technology (WF). We will iteratively address: (1) systematic quantitative identification of components, (2) their localization and dynamics, (3) structures and molecular building blocks of diverse plasmodesmatal types, and (4) transport and signaling mechanisms. We expect breakthrough discoveries and completely new understanding of plasmodesmatal function and evolution. Since plasmodesmata play key roles in nutrient allocation and virus spread, we lay the basis for novel biotech solutions in agriculture.

Régime de financement

ERC-SyG - Synergy grant

Institution d’accueil

HEINRICH-HEINE-UNIVERSITAET DUESSELDORF
Contribution nette de l'UE
€ 5 470 125,00
Adresse
UNIVERSITAETSSTRASSE 1
40225 Dusseldorf
Allemagne

Voir sur la carte

Région
Nordrhein-Westfalen Düsseldorf Düsseldorf, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 5 470 125,00

Bénéficiaires (3)