Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

NANOMATERIALS ENABLING SMART ENERGY HARVESTING FOR NEXT-GENERATION INTERNET-OF-THINGS

Project description

The fourth Industrial Revolution is green

The fourth Industrial Revolution is based on the deployment of the Internet of Things (IoT), which interconnects autonomous mobile devices with unprecedented processing power, storage capacity and access to knowledge. In the future, our devices will become more and more connected. However, this will require environment-friendly, battery-less and efficient power supply solutions in computing, sensing and human-machine interaction. To tackle this issue, the EU-funded NANO-EH project aims to use nanomaterials in advanced device engineering for smart energy harvesting/storage submodules that are tailored for the specific needs of stand-alone, mobile or portable uses. The project aims to develop non-toxic and rare earth/lead-free materials to carry out the fourth Industrial Revolution.

Objective

The 4th Industrial Revolution (4IR) builds on the Internet-of-Things (IoT) paradigm, as it relies upon the scenario of having billions of interconnected autonomous mobile devices, with unprecedented processing power, storage capacity and access to knowledge. While enabling such massive deployment, the 4IR should be increasingly eco-friendly. The 4IR is a disrupting approach that will force companies in almost every domain to re-organize themselves in a more efficient way, by exploiting technological breakthroughs such us artificial intelligence , wireless communication and quantum computing. The integration of these emerging technologies into every day life requires efficient power supply solutions in computing, sensing, memory enlargement and human-machine interaction. One perceived bottleneck for 4IR is that in most situations, IoT devices/networks will be remotely deployed, so that maintenance may be either incovenient or impossible. In particular, this implies that IoT devices either have to embed energy sources consistent with their operative lifespan or that clean and renewable energy convertors, if working off-grid, must sit on board. The significant broadening of the wireless communication spectrum in Europe makes the Radio frequency (RF) energy scavenging a highly desirable way forward for clean powering of the next-generation IoT.NANO-EH has the ambitious vision of creating a pathway for translating forefront knowledge of unique high frequency properties of emerging classes of nanomaterials into advanced device engineering for scalable miniaturized energy harvesting/storage submodules that are tailored for the specific needs of stand-alone, mobile or portable uses. It surpasses the current paradigm of energy harvesting materials by developing non-toxic and rare earth/lead-free materials exhibiting CMOS-compatibility and scalability for low cost and large-scale manufacturing.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETPROACT-2019-2020

See all projects funded under this call

Coordinator

UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 723 750,00
Address
WESTERN ROAD
T12 YN60 Cork
Ireland

See on map

Region
Ireland Southern South-West
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 723 750,00

Participants (10)

My booklet 0 0