Project description
New framework to decipher biomolecular interaction
Attempts to improve animal and plant microbiome functions are largely unsuccessful since interactions between the host’s biological process and their microbiome remain only superficially understood. What is certain is that microbiome functions can be optimised for sustainable food production. The question is how. In this context, the EU-funded FindingPheno project will develop a holistic statistical framework to decipher biomolecular interactions between host and microbiome. Specifically, it will combine biological knowledge and state-of-the-art statistical methods: structural causal modelling, variable selection, dimensionality reduction and feature detection. The next step will be to apply the framework to case studies from actual food production systems. The aim is to demonstrate the utility of the framework and provide avenues for quick and easy application of this new approach.
Objective
Animal and plant microbiome functions can be modulated, and thereby optimized, for sustainable food production. However, the outcome, i.e. the microbial response, can vary greatly depending on (e.g.)Animal and plant microbiome functions can be modulated, and thereby optimized, for sustainable food production. However, the outcome, i.e. the microbial response, can vary greatly depending on (e.g.) the genetic background and developmental stage of the host, and the farming environment. The interactions between the biological process of the host and their microbiome are still only superficially understood, even though microbial interventions have been used for years. This incomplete understanding means that new attempts to improve microbiome functions are both inefficient and costly, and unlikely to hit upon the optimal solutions. An approach that recognizes the intimate biological interactions between host genome and microbiome functions holds the potential to greatly reduce cost and improve the outcome.
To that end, FindingPheno will develop a holistic statistical framework to decipher biomolecular interactions between host and microbiome by combining biological knowledge and state-of-the-art statistical methods: structural causal modelling, variable selection, dimensionality reduction and feature detection. We will then apply the framework to case studies from actual food production systems, using a unique multi-omics data set from three biological systems – chicken, salmon and maize – derived from ongoing research projects. In addition, we demonstrate the utility of the framework to obtain biological insights from publicly available data sets from tomato and bees.
We expect to show how to improve the effectiveness of microbiome interventions in sustainable food production, and simultaneously, we will offer avenues for quick and easy application of this new approach to other relevant biotechnology-based industries, e.g. enzyme production and fermentation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics genomes
- natural sciences biological sciences microbiology
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
- engineering and technology industrial biotechnology bioprocessing technologies fermentation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.4. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Biotechnology
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-NMBP-TR-IND-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.