Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Very High Energy Electrons for RadioTherapy (VHERAPY)

Project description

Radiotherapy that goes deep and hits the mark while minimising collateral damage

Radiation therapy, also known as radiotherapy, uses high doses of radiation to kill cancer cells. The goal is always to get to the 'bad' cells without harming the good ones. In addition, penetrating to greater depths expands the types of tumours that can be treated. Very high energy electrons produced by compact laser plasma accelerators have the potential to achieve this dual goal. However, facilities are large and expensive, making their accessibility limited. Scientists of the EU-funded VHERAPY project are taking their compact and highly effective system to market. The novel solution could extend the benefits of radiotherapy to numerous patients and tumour types while minimising the exposure of healthy cells and tissues to ionising radiation.

Objective

Very High Energy Electrons (VHEE) as those produced by compact laser plasma accelerators are ideal candidate in radiotherapy (RT). The corresponding dose distribution of the already produced low divergence and quasi-monoenergetic electron beam portends significant potential to treat deep tissue tumors, due to VHEE’s narrow radial dose deposition profile and long penetration distance. Our technological breakthrough is creating VHEE beam suitable for radiation therapy with a single laser and in relatively small space. Therefore, we expect our discovery to enable smaller, simpler and cheaper RT machinery with superior therapy performance. This will bring added value to RT device manufacturers and operators. Our approach substantially reduces the size of the acceleration complex leading to significantly smaller footprint, and investments in such facilities. We also enable increasing patient throughput while facilitating lower radiation protection requirements. The approach is safer for patients – for instance, our numerical studies of dose deposition in cases of prostate cancer indicate that VHEE reduces 20% of the ionizing radiation in healthy tissues. Moreover, obesity makes cancer treatment more difficult and adverse side effects more common, for which VHEE-RT represents an efficient and economically pertinent solution. In addition to increasing the technology maturity in this PoC, we will study and prepare commercialization plans of the approach and variety of VHEE-RT components. Moreover, we will carry out IP protection and networking tasks with collaborators, potential customers and investors for improving our chances of commercialization success.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-PoC

See all projects funded under this call

Host institution

WEIZMANN INSTITUTE OF SCIENCE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0