Description du projet
Former les chercheurs aux modèles en boîte grise
Les solutions de mobilité façonnent l’avenir, plaçant l’expérience humaine au centre des transports et dans tous les modes et infrastructures. La prochaine étape consiste à soutenir la transition en cours de la mobilité personnelle européenne vers des systèmes de mobilité intelligents sûrs et fiables. Le projet GREYDIENT, financé par l’UE, établira un réseau de formation innovant pour la prochaine génération de chercheurs en début de carrière (ESR). L’accent sera mis sur les modèles en boîte grise, qui sont une réponse au problème pressant, car ils visent à intégrer de manière optimale des outils d’apprentissage automatique (boîte noire) basés sur les données avec des modèles de simulation (boîte blanche). Les ESR seront formés à la modélisation, à la propagation et à la quantification des variabilités pertinentes, à l’application des mégadonnées et des méthodes d’apprentissage automatique ainsi qu’à la combinaison optimale d’approches basées sur les données avec des modèles numériques.
Objectif
The GREYDIENT innovative training network aims at training a next generation of Early Stage Researchers (ESR) to fully sustain the ongoing transition of European personal mobility towards safe and reliable intelligent mobility systems via the recently introduced framework of grey-box modelling approaches. One of the main challenges that we currently face in this context is the integration of the data captured from the plenitude of sensors that are involved in a particular road-traffic scenario, ranging from monitoring car-component loading situations to power network-reliability estimations. The aim is to fully exploit the potential of merging these data with advanced computational models of components and systems that are widely available in industry in order to fully assess the momentarily safety. Grey box models are an answer to this pressing issue, as they are aimed at optimally integrating (black-box) data driven machine learning tools with (white-box) simulation models to greatly surpass the performance of either framework separately. However, the training of professional profiles in Europe who combine knowledge and experience in state-of-the-art data-driven black box and numerical white box approaches with expertise in methods for reliability and safety estimation is scarce. Therefore, GREYDIENT will train its ESR’s in a wide spectrum of fields, including the modelling, propagation and quantification of the relevant variabilities, the application of big data and machine learning methods, as well as the optimal combination of data-driven approaches with numerical models. All our ESR’s will obtain a PhD from an internationally respected University, build experience in communicating and disseminating their work, applying their research skills in a non-academic context and receive in-depth training in transferable skills such commercialization, collaboration and entrepreneurship. This training will be organized in close cooperation with key industry stakeholders.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- social scienceseconomics and businessbusiness and managemententrepreneurship
- natural sciencescomputer and information sciencesdata sciencebig data
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationstelecommunications networksdata networks
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
Programme(s)
Régime de financement
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)Coordinateur
3000 Leuven
Belgique