Project description
Building a strong research network for integrated quantum photonics
Funded under the Marie Skłodowska-Curie Actions programme, the AppQInfo project will train early-stage researchers in state-of-the-art integrated quantum photonics, one of five critical key enabling technologies for Europe. Using photonic integrated circuits to control photonic quantum states, integrated photonics allows the generation, manipulation and readout of photonic quantum states in a highly controlled manner. It dramatically increases computation speed and efficiency compared to electronics circuits. Young researchers will work on 15 interdisciplinary projects that will focus on developing feasible long-distance quantum communications from urban-scale networks to satellite-based systems; studying quantum transport properties and quantum Fourier transforms in photonic circuits; building all-optical artificial neural networks and applying them for quantum simulations; and developing sources and detectors of multiphoton quantum states and polaritonic logic gates.
Objective
AppQInfo will provide a world class training in photonic Quantum Information Processing (pQIP), and prepare an excellent cohort of Early Stage Researchers (ESRs) to become the future R&D staff of Europe’s emerging markets in this area. Quantum Information Processing (QIP) is a key ingredient in Europe’s future Quantum Communication Infrastructure; it underpins quantum communications and quantum simulations, the first two pillars of the H2020 Quantum Flagship. QIP will revolutionise information technology, providing higher quality, speed and unconditional security, not possible with classical technologies. AppQInfo focusses on QIP in state-of-the-art integrated photonics, one of five Key Enabling Technologies for European Industry. Integrated photonics permits the creation, manipulation and readout of photonic quantum states in a highly controlled manner, with high speeds and low losses. The broad objectives of AppQInfo are: to create an excellent training of ESRs in the field of pQIP that is both interdisciplinary and intersectoral; to develop innovative, entrepreneurial ESRs with great career prospects; to maximise the exploitation and dissemination of our research; to engage the public through several outreach activities; to consolidate a wide expertise in the field of pQIP; to create a long-lasting collaboration network of top-class research units and industrial entities. Together, our 15 interdisciplinary research projects will work towards feasible long-distance quantum communications from urban-scale networks to satellite-based systems using various data encoding; study quantum photonic circuits towards their quantum transport properties and quantum transforms they implement; exploit these platforms for machine learning applications, such as building all-optical artificial neural networks, and applying them for quantum simulations; develop enabling technologies of sources and detectors of multiphoton quantum states and polaritonic logic gates.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00-927 WARSZAWA
Poland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.