Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Data Driven Computational Mechanics at EXascale

Project description

Inching a step closer to the exascale computing era

The EU-funded DComEX project plans to develop numerical methods enhanced by artificial intelligence as well as a scalable software framework that enables exascale computing. A key innovation of DComEX is the development of AI-Solve, a novel scalable library of AI-enhanced algorithms for solving large-scale sparse linear systems, which are fundamental to computational mechanics. Researchers will fuse physics-constrained machine learning with efficient block-iterative methods and incorporate experimental data at multiple levels of fidelity to quantify model uncertainties. Efficient deployment of these methods in exascale supercomputers will offer scientists and engineers unprecedented capabilities for conducting predictive simulations of mechanical systems in applications ranging from bioengineering to manufacturing.

Objective

DCoMEX aims to provide unprecedented advances to the field of Computational Mechanics by developing novel numerical methods enhanced by Artificial Intelligence, along with a scalable software framework that enables exascale computing. A key innovation of our project is the development of AI-Solve, a novel scalable library of AI-enhanced algorithms for the solution of large scale sparse linear system that are the core of computational mechanics. Our methods fuse physics-constrained machine learning with efficient block-iterative methods and incorporate experimental data at multiple levels of fidelity to quantify model uncertainties. Efficient deployment of these methods in exascale supercomputers will provide scientists and engineers with unprecedented capabilities for predictive simulations of mechanical systems in applications ranging from bioengineering to manufacturing. DCoMEX exploits the computational power of modern exascale architectures, to provide a robust and user friendly framework that can be adopted in many applications. This framework is comprised of AI-Solve library integrated in two complementary computational mechanics HPC libraries. The first is a general-purpose multiphysics engine and the second a Bayesian uncertainty quantification and optimisation platform. We will demonstrate DCoMEX potential by detailed simulations in two case studies: (i) patient-specific optimization of cancer immunotherapy treatment, and (ii) design of advanced composite materials and structures at multiple scales. We envision that software and methods developed in this project can be further customized and also facilitate developments in critical European industrial sectors like medicine, infrastructure, materials, automotive and aeronautics design.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-JTI-EuroHPC-2019-1

See all projects funded under this call

Coordinator

ETHNICON METSOVION POLYTECHNION
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 465 625,00
Address
HEROON POLYTECHNIOU 9 ZOGRAPHOU CAMPUS
157 72 ATHINA
Greece

See on map

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 993 750,00

Participants (4)

My booklet 0 0