Description du projet
Former les modèles d’apprentissage automatique à effectuer des tâches en langage naturel
Internet contient de vastes quantités de données et d’informations, écrites et audiovisuelles, et dans de nombreuses langues différentes. Il est de plus en plus nécessaire de tirer profit de cette ressource largement inexploitée. Le projet SELMA, financé par l’UE, s’intéressera à l’ingestion et la surveillance de grandes quantités de données. Le projet formera systématiquement des modèles d’apprentissage automatique à effectuer des tâches en langage naturel et utilisera ces modèles pour surveiller les flux de données, dans le but d’améliorer la surveillance des médias multilingues et la production de contenus d’actualité. À terme, le projet permettra de faire progresser les techniques de pointe en matière de modélisation du langage, de traduction automatique et de reconnaissance et synthèse de la parole.
Objectif
SELMA builds a continuous deep learning multilingual media platform using extreme analytics.
Large amounts of multilingual text and speech data are available in the internet, but the potential to fully take advantage of this data has remained largely untapped. Recent advances in deep learning and transfer learning have opened the door to new possibilities – in particular integrating knowledge from these large unannotated datasets into plugable models for tackling machine learning tasks.
The aim of the Stream Learning for Multilingual Knowledge Transfer (SELMA) is to address three tasks: ingest large amounts of data and continuously train machine learning models for several natural language tasks; monitor these data streams using such models to improve multilingual Media Monitoring (use case 1); and improve the task of multilingual News Content Production (use case 2), thereby closing the loop between content monitoring and production.
SELMA has eight goals: 1. Enable processing of massive video and text data streams in a distributed and scalable fashion 2. Develop new methods for training unsupervised deep learning language models in 30 languages 3. Enable knowledge transfer across tasks and languages, supporting low-resourced languages 4. Develop novel data analytics methods and visualizations to facilitate the media monitoring decision-making process 5. Develop an open-source platform to optimize multilingual content production in 30 languages 6. Fine-tune deep learning models from user feedback, reducing recurring errors 7. Ensure a sustainable exploitation of the SELMA platform 8. Encourage active user involvement in the platform.
Achieving these aims requires advancing the state of the art in multiple technologies (transfer learning, language modelling, speech recognition, machine translation, summarization, speech synthesis, named entity linking, learning from user feedback), while building upon previous project results and existing services.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles informatique et science de l'information internet
- sciences naturelles informatique et science de l'information intelligence artificielle apprentissage automatique apprentissage profond
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
RIA - Research and Innovation action
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-ICT-2018-20
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
53113 Bonn
Allemagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.