European Commission logo
English English
CORDIS - EU research results
CORDIS

Battery Interface Genome - Materials Acceleration Platform

Project description

Promoting accelerated discovery of novel battery materials

Energy production and transport are evolving rapidly to meet today’s growing demand and environmental goals. However, low-cost and high-performance solutions are lacking when it comes to energy storage. To address the absence of innovative battery technologies, the EU-funded BIG-MAP project aims to develop a modular, closed-loop infrastructure and methodology to bridge physical insights and data-driven approaches. To this end, it will cohesively integrate machine learning, computer simulations and AI-orchestrated experiments and synthesis to accelerate the discovery and optimisation of sustainable battery materials. The project will play a role in the creation of a versatile and chemistry-neutral European Materials Acceleration Platform that can significantly increase the rate of discovery of new battery materials and interfaces.

Objective

Today, energy production and transport are evolving fast to meet challenging environmental targets and growing demand. The Achilles’ heel is energy storage, which is incapable of providing both low cost and high-performance solutions. The answer is not a simple evolution of existing batteries but disruptive technologies that must be discovered fast.
The BIG-MAP vision is to develop a modular, closed-loop infrastructure and methodology to bridge physical insights and data-driven approaches to accelerate the discovery of sustainable battery chemistries and technologies. BIG-MAP’s strategy is to cohesively integrate machine learning, computer simulations and AI-orchestrated experiments and synthesis to accelerate battery materials discovery and optimization. The project will be a lever to create the infrastructural backbone of a versatile and chemistry-neutral European Materials Acceleration Platform, capable of reaching a 10-fold increase in the rate of discovery of novel battery materials and interfaces.
To succeed in this unprecedented international initiative, the BIG-MAP consortium covers the entire battery discovery value chain from atoms to battery cells, totaling 34 partners from 15 countries and spanning world-leading academic experts, research laboratories and industry leaders. The consortium is a joint European battery community effort, and the large-scale European Research Initiative BATTERY 2030+ stands united behind the BIG-MAP consortium. In addition to 13 core partners from BATTERY 2030+, the BIG-MAP consortium includes 21 leading European partners with complementary battery skills and essential competences from critical research areas such as quantum machine learning, deep learning and autonomous synthesis robotics. All partners will work to create an innovative methodology relying on unique competences and cross-cutting initiatives to deliver a shared infrastructure and 12 key demonstrators to showcase the value of AI-orchestrated materials discovery.

Call for proposal

H2020-LC-BAT-2019-2020

See other projects for this call

Sub call

H2020-LC-BAT-2020-3

Coordinator

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution
€ 2 411 617,00
Address
ANKER ENGELUNDS VEJ 101
2800 Kongens Lyngby
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 2 411 617,00

Participants (38)