Project description
Innovative design for embedded software systems
The next generation of networked embedded systems (ES) requires fast prototyping and high performance in addition to its key properties of reliability and safety. However, the dependence of the current autonomous systems trend on machine learning and artificial intelligence applications in combination with fail-operational requirements makes the verification and validation of ES a challenging endeavour. The EU-funded XANDAR project will address the goals defined within the ICT-50-2020 Software Technologies call, delivering a mature software toolchain that fulfils the industrial requirements for rapid prototyping of interoperable and autonomous ES. A model-based system architecture to support novel automatic model synthesis and software parallelisation techniques will be used to achieve the objectives of a new real-time, safety- and security-by-construction paradigm.
Objective
The next generation of networked embedded systems (ES) necessitates rapid prototyping and high performance while maintaining key qualities like trustworthiness and safety. However, deployment of safety-critical ES suffers from complex software (SW) toolchains and engineering processes. Moreover, the current trend in autonomous systems relying on Machine Learning (ML) and AI applications in combination with fail-operational requirements renders the Verification and Validation (V&V) of these new systems a challenging endeavor. Prime examples are autonomous driving cars that are prone to various safety/security vulnerabilities. The XANDAR project is built to exactly match the goals defined within the ICT-50 Software Technologies.
XANDAR will deliver a mature SW toolchain (from requirements capture down to the actual code integration on target including V&V) fulfilling the needs of the industry for rapid prototyping of interoperable and autonomous ES. Starting from a model-based system architecture, XANDAR will leverage novel automatic model synthesis and software parallelization techniques to achieve specific non-functional requirements setting the foundation for a novel real-time, safety-, and security-by-Construction (X-by-Construction) paradigm. For the first time, XbC-guided code generation for non-deterministic ML/AI applications will be combined with novel runtime monitors to ensure fail-operation in the presence of runtime faults and security exploitations. The project provides a consortium covering the full spectrum of ES and software engineering. XANDAR will be validated by an automotive OEM (BMW) and the German Aerospace Center (DLR). Leading European SMEs and enterprises such as Vector, AVN, and fentISS as well as successful academic partners will contribute their diverse knowhow in Model-Driven Engineering, Software Systems and V&V, multicore architectures, code generation, and security enforcements from higher-level behavioral models to actual runnables.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software software applications system software
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2018-20
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
76131 Karlsruhe
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.