Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Towards AI powered manufacturing services, processes, and products in an edge-to-cloud-knowlEdge continuum for humans [in-the-loop]

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Initial Description of KnowlEdge Repository (se abrirá en una nueva ventana)

describe the development and the functionalities of projects repository

Final evaluation KPIs (se abrirá en una nueva ventana)

Evaluation methodology and KPIs

Edge AI Learning Pipeline Orchestration (se abrirá en una nueva ventana)

design of the pipeline for model generation based on the data analysis, the (semi-)automatic knowlEdge extraction and the automated model generation

Report on the contribution of standardization (se abrirá en una nueva ventana)

a report that documents contributions to standardization

Evolutionary Requirement Engineering and Innovations [Initial/Updated/Final] (se abrirá en una nueva ventana)

this report describes the requirements analysis all stakeholder requirements (functional and non-functional)

Initial Business models and requirements (se abrirá en una nueva ventana)

the deliverable presents a first version of the results of the stakeholders business requirements and models analyses for AI implementation

Vision, Specifications and System Architecture [Initial/Updated/Final] (se abrirá en una nueva ventana)

a public report documenting the requirements and architecture specifications

Technical review (Interim management report) (se abrirá en una nueva ventana)

Interim management report for the reviewers without the financial part otherwise required for management reports issued at the end of reporting periods

Final Business models and requirements (se abrirá en una nueva ventana)

the deliverable presents the final version of the results of the stakeholders’ business requirements and models analyses for AI implementation

Market Radar and Technology Adaptations [Initial/Updated/Final] (se abrirá en una nueva ventana)

this report describes the evolving landscape of AI technologies related with the industry and manufacturing sector

Final Description of KnowlEdge Repository (se abrirá en una nueva ventana)

this deliverable updates D5.2

Data management plan (se abrirá en una nueva ventana)

specifies how research data are handled during and after a research project

Bootstrapping on AI Models (se abrirá en una nueva ventana)

this deliverable describes all the necessary procedures for execution of AI models in HPC or cloud environment

Pilot Evaluation methodology and implementation plan (se abrirá en una nueva ventana)

Implementation and management plan

Project Manual (quality assurance and risk assessment) (se abrirá en una nueva ventana)

helps the Consortium with quality assurance and identification of relevant quality standards and best practices and means to achieve them and supports the implementation of internal quality checks

User need specification and scenario definition [Initial/Updated/Final] (se abrirá en una nueva ventana)

this report describes the knowlEdge scenarios based on the analysis of user needs. As part of the iterative methodology, the report is updated twice

Dissemination Roadmap & Activities (se abrirá en una nueva ventana)

this deliverable provide the projects dissemination activities

Update on Exploitation strategy & IPR management (se abrirá en una nueva ventana)

Updates the report on the project's Exploitation strategy & IPR management

Last report on dissemination activities (se abrirá en una nueva ventana)
Exploitation Strategy & IPR Management (se abrirá en una nueva ventana)

The deliverable describes how to facilitate the acceptance and utilisation by the market of the developed solutions

AI model Description (se abrirá en una nueva ventana)

describe all the technologies and APIs to make AI models functional in the process environment

Training, Workshops, and Seminars (se abrirá en una nueva ventana)

a report that documents all the workshops and seminars that were planned during the project, their contents and their goals

Generalized Automated Learning for Industrial Environments (se abrirá en una nueva ventana)

this deliverable describes a multi-scale dynamic environment for autonomous learning and re-training of the AI models

Final Data Management and Data Quality modules (se abrirá en una nueva ventana)

this deliverable will contain the final work done in task T3.2. In particular will describe the adopted approach, architecture and structure of the data quality and management modules with respect to the platform.

(Semi-)Automatic Knowledge Discovery for AI Model Generation (se abrirá en una nueva ventana)

initial data analysis results including the description and evaluation of used methods

First report on dissemination activities (se abrirá en una nueva ventana)
Initial Data Management and Data Quality modules (se abrirá en una nueva ventana)

this deliverable will contain the initial work done in task T32 In particular will describe the initial approach architecture and structure of the data quality and management modules

Initial knowlEdge website (se abrirá en una nueva ventana)

this deliverable provide a brief description of the initial projects website and is functionalities

Initial Site-wide Data Storage and Governance suit (se abrirá en una nueva ventana)

provides the overview of the results produced in T3.3. This deliverable lists the data models, protocols and planned architecture of the components to be developed.

Human-AI Collaboration and Domain Knowledge Fusion (se abrirá en una nueva ventana)

Describe the collaboration of humans with an automated AI pipeline.

Final Decision Support Framework (se abrirá en una nueva ventana)

this deliverable updates D7.2.

Initial explainable mechanisms DFS (se abrirá en una nueva ventana)

a prototype deliverable that documents the design and implementation of the integrated 2-Axis DSF, that encapsulates decision strategies and rules, KPIs, as well as a number of parameters that affect product and process quality.

Initial user-centric dashboards as enable explainable AI (se abrirá en una nueva ventana)

a prototype deliverable that documents all the enhanced visualizations that support the decision making mechanisms of the 2-Axis DSF

Initial Provisioning and Deployment Management Tool (se abrirá en una nueva ventana)

planned Concept, architecture and communication protocols that shall be developed as part of T6.3

Final site-wide data collection and integration toolkit (se abrirá en una nueva ventana)

provides the overview of the results produced in T3.1. This deliverable updates on D3.1 with the details of the deployments and results.

Final knowlEdge Marketplace Platform (se abrirá en una nueva ventana)

this deliverable updates D5.4

Full knowledge website (se abrirá en una nueva ventana)

this deliverable provide a brief description of the full project website and is functionalities

Final Provisioning and Deployment Management Tool (se abrirá en una nueva ventana)

this deliverable updates D6.4

Initial site-wide data collection and integration toolkit (se abrirá en una nueva ventana)

provides the overview of the results produced in T31 This deliverable lists the data models protocols and planned architecture of the components to be developed

Final Site-wide Data Storage and Governance suit (se abrirá en una nueva ventana)

provides the overview of the results produced in T3.3. This deliverable updates on D3.5 with the details of the deployments and results.

Final user-centric dashboards as enable explainable AI (se abrirá en una nueva ventana)

this deliverable updates D7.4

Initial KnowlEdge Marketplace Platform (se abrirá en una nueva ventana)

a public prototype deliverable that documents the architecture, the features and the capabilities of the knowlEdge marketplace

Evaluation results and KPI assessment (se abrirá en una nueva ventana)

AI maturity tool results and KPI performance indicators (assessment framework). Describes the overall impact of the application of AI models on the pilot sites. These results are provided as open research data for others to access and re-use and may for example be used to validate results in scientific publications.

Publicaciones

Towards Industry 5.0 – A Trustworthy AI Framework for Digital Manufacturing with Humans in Control

Autores: Usman Wajid, Alexandros Nizamis, Victor Anaya
Publicado en: Proceedings of Interoperability for Enterprise Systems and Applications Workshops co-located with 11th International Conference on Interoperability for Enterprise Systems and Applications (I-ESA 2022), Edición 2022, 2022, Página(s) 6, ISSN 1613-0073
Editor: CEUR

LOGIC: Probabilistic Machine Learning for Time Series Classification (se abrirá en una nueva ventana)

Autores: Fabian Berns, Jan David Hüwel, Christian Beecks
Publicado en: IEEE International Conference on Data Mining, Edición 2021, 2021, Página(s) 1000-1005, ISBN 978-1-6654-2398-4
Editor: IEEE
DOI: 10.1109/icdm51629.2021.00113

Automated Kernel Search for Gaussian Processes on Data Streams (se abrirá en una nueva ventana)

Autores: Jan David Hüwel; Fabian Berns; Christian Beecks
Publicado en: IEEE International Conference on Big Data, Edición 2021, 2021, Página(s) 3584-3588, ISBN 978-1-6654-3902-2
Editor: IEEE
DOI: 10.1109/bigdata52589.2021.9671767

knowlEdge Project –Concept, Methodology and Innovations for Artificial Intelligence in Industry 4.0 (se abrirá en una nueva ventana)

Autores: Alvarez-Napagao, Sergio; Ashmore, Boki; Barroso, Marta; Barrué, Cristian; Beecks, Christian; Berns, Fabian; Bosi, Ilaria; Chala, Sisay Adugna; Ciulli, Nicola; Garcia-Gasulla, Marta; Grass, Alexander; Ioannidis, Dimosthenis; Jakubiak, Natalia; Köpke, Karl; Lämsä, Ville; Megias, Pedro; Nizamis, Alexandros; Pastrone, Claudio; Rossini, Rosaria; Sànchez-Marrè, Miquel; Ziliotti, Luca
Publicado en: IEEE 19th International Conference on Industrial Informatics, Edición 2021, 2021, Página(s) 7, ISBN 978-1-7281-4395-8
Editor: IEEE
DOI: 10.1109/indin45523.2021.9557410

Evaluating the Lottery Ticket Hypothesis to Sparsify Neural Networks for Time Series Classification (se abrirá en una nueva ventana)

Autores: Georg Stefan Schlake; Jan David Hüwel; Fabian Berns; Christian Beecks
Publicado en: IEEE International Conference on Data Engineering Workshops, Edición 2022, 2022, Página(s) 70-73, ISBN 978-1-6654-8104-5
Editor: IEEE
DOI: 10.1109/icdew55742.2022.00015

Local Gaussian Process Model Inference Classification for Time Series Data (se abrirá en una nueva ventana)

Autores: Fabian Berns, Joschka Hannes Strueber, Christian Beecks
Publicado en: 33rd International Conference on Scientific and Statistical Database Management, Edición 2021, 2021, Página(s) 209-213, ISBN 978-1-4503-8413-1
Editor: ACM
DOI: 10.1145/3468791.3468839

Anomaly Detection in Manufacturing (se abrirá en una nueva ventana)

Autores: Jona Scholz Maike Holtkemper Alexander Graß Christian Beecks
Publicado en: Artificial Intelligence in Manufacturing, Edición 2024, 2024, Página(s) 351-360, ISBN 978-3-031-46452-2
Editor: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_20

Boosting AutoML and XAI in Manufacturing: AI Model Generation Framework (se abrirá en una nueva ventana)

Autores: Marta Barroso Daniel Hinjos Pablo A. Martin Marta Gonzalez-Mallo Victor Gimenez-Abalos Sergio Alvarez-Napagao
Publicado en: Artificial Intelligence in Manufacturing, Edición 2024, 2024, Página(s) 333-350, ISBN 978-3-031-46452-2
Editor: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_19

Human-AI Interaction for Semantic Knowledge Enrichment of AI Model Output (se abrirá en una nueva ventana)

Autores: Sisay Adugna Chala Alexander Graß
Publicado en: Artificial Intelligence in Manufacturing, Edición 2024, 2024, Página(s) 43-54, ISBN 978-3-031-46452-2
Editor: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_3

Designing Human and Artificial Intelligence Interactions in Industry X (se abrirá en una nueva ventana)

Autores: Stefan Walter
Publicado en: Service Design for Emerging Technologies Product Development, Edición 21 July 2023, 2023, Página(s) 207-232, ISBN 978-3-031-29306-1
Editor: Springer, Cham
DOI: 10.1007/978-3-031-29306-1_12

Designing a Marketplace to Exchange AI Models for Industry 5.0 (se abrirá en una nueva ventana)

Autores: Alexandros Nizamis Georg Schlake Georgios Siachamis Vasileios Dimitriadis Christos Patsonakis Christian Beecks Dimosthenis Ioannidis Konstantinos Votis Dimitrios Tzovaras
Publicado en: Artificial Intelligence in Manufacturing, Edición 2024, 2024, Página(s) 27-41, ISBN 978-3-031-46452-2
Editor: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_2

A Manufacturing Digital Twin Framework (se abrirá en una nueva ventana)

Autores: Victor Anaya Enrico Alberti Gabriele Scivoletto
Publicado en: Artificial Intelligence in Manufacturing, Edición 2024, 2024, Página(s) 181-193, ISBN 978-3-031-46452-2
Editor: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_10

Advancing Networked Production Through Decentralised Technical Intelligence (se abrirá en una nueva ventana)

Autores: Stefan Walter Markku Mikkola
Publicado en: Artificial Intelligence in Manufacturing, Edición 2024, 2024, Página(s) 281-300, ISBN 978-3-031-46452-2
Editor: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_16

Production Scheduling Optimization enabled by Digital Cognitive Platform (se abrirá en una nueva ventana)

Autores: Konstantinos Georgiadis, Alexandros Nizamis, Thanasis Vafeiadis, Dimosthenis Ioannidis, Dimitrios Tzovaras
Publicado en: Procedia Computer Science, Edición 204, 2022, Página(s) 424-431, ISSN 1877-0509
Editor: Elsevier
DOI: 10.1016/j.procs.2022.08.052

Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms (se abrirá en una nueva ventana)

Autores: Fabian Berns, Jan Hüwel, Christian Beecks
Publicado en: SN Computer Science, Edición 3 (4), 2022, Página(s) 300, ISSN 2661-8907
Editor: Springer Nature
DOI: 10.1007/s42979-022-01186-x

AI Lifecycle Zero-Touch Orchestration within the Edge-to-Cloud Continuum for Industry 5.0 (se abrirá en una nueva ventana)

Autores: Alberti, Enrico; Alvarez-Napagao, Sergio; Anaya, Victor; Barroso, Marta; Barrué, Cristian; Beecks, Christian; Bergamasco, Letizia; Chala, Sisay Adugna; Gimenez-Abalos, Victor; Graß, Alexander; Hinjos, Daniel; Holtkemper, Maike; Jakubiak, Natalia; Nizamis, Alexandros; Pristeri, Edoardo; Sànchez-Marrè, Miquel; Schlake, Georg; Scholz, Jona; Scivoletto, Gabriele; Walter, Stefan
Publicado en: Systems, Edición 12, 48, 2024, Página(s) 32, ISSN 2079-8954
Editor: MDPI
DOI: 10.3390/systems12020048

Explaining the Behaviour of Reinforcement Learning Agents in a Multi-Agent Cooperative Environment Using Policy Graphs (se abrirá en una nueva ventana)

Autores: Domenech i Vila, M.; Gnatyshak, D.; Tormos, A.; Gimenez-Abalos, V.; Alvarez-Napagao, S.
Publicado en: Electronics, Edición 13(3), 573, 2024, Página(s) 19, ISSN 2079-9292
Editor: MDPI
DOI: 10.3390/electronics13030573

Impacts of AI driven manufacturing processes on supply chains: the contributions of the knowlEdge project (se abrirá en una nueva ventana)

Autores: Stefan Walter
Publicado en: Transportation Research Procedia, Edición 72, 2023, Página(s) 3443-3449, ISSN 2352-1465
Editor: Elsevier
DOI: 10.1016/j.trpro.2023.11.773

AI impacts on supply chain performance : a manufacturing use case study (se abrirá en una nueva ventana)

Autores: Stefan Walter
Publicado en: Discover Artificial Intelligence, Edición 3:28, 2023, ISSN 2731-0809
Editor: Springer Nature
DOI: 10.1007/s44163-023-00061-9

Testing Reinforcement Learning Explainability Methods in a Multi-Agent Cooperative Environment (se abrirá en una nueva ventana)

Autores: Domènech Vila, Marc; Gnatyshak, Dmitry; Tormos Llorente, Adrián; Álvarez Napagao, Sergio
Publicado en: Frontiers in Artificial Intelligence and Applications, Edición Volume 356: Artificial Intelligence Research and Development, 2022, Página(s) 355-364, ISSN 0922-6389
Editor: IOS Press
DOI: 10.3233/faia220358

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0