Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Towards AI powered manufacturing services, processes, and products in an edge-to-cloud-knowlEdge continuum for humans [in-the-loop]

CORDIS bietet Links zu öffentlichen Ergebnissen und Veröffentlichungen von HORIZONT-Projekten.

Links zu Ergebnissen und Veröffentlichungen von RP7-Projekten sowie Links zu einigen Typen spezifischer Ergebnisse wie Datensätzen und Software werden dynamisch von OpenAIRE abgerufen.

Leistungen

Initial Description of KnowlEdge Repository (öffnet in neuem Fenster)

describe the development and the functionalities of projects repository

Final evaluation KPIs (öffnet in neuem Fenster)

Evaluation methodology and KPIs

Edge AI Learning Pipeline Orchestration (öffnet in neuem Fenster)

design of the pipeline for model generation based on the data analysis, the (semi-)automatic knowlEdge extraction and the automated model generation

Report on the contribution of standardization (öffnet in neuem Fenster)

a report that documents contributions to standardization

Evolutionary Requirement Engineering and Innovations [Initial/Updated/Final] (öffnet in neuem Fenster)

this report describes the requirements analysis all stakeholder requirements (functional and non-functional)

Initial Business models and requirements (öffnet in neuem Fenster)

the deliverable presents a first version of the results of the stakeholders business requirements and models analyses for AI implementation

Vision, Specifications and System Architecture [Initial/Updated/Final] (öffnet in neuem Fenster)

a public report documenting the requirements and architecture specifications

Technical review (Interim management report) (öffnet in neuem Fenster)

Interim management report for the reviewers without the financial part otherwise required for management reports issued at the end of reporting periods

Final Business models and requirements (öffnet in neuem Fenster)

the deliverable presents the final version of the results of the stakeholders’ business requirements and models analyses for AI implementation

Market Radar and Technology Adaptations [Initial/Updated/Final] (öffnet in neuem Fenster)

this report describes the evolving landscape of AI technologies related with the industry and manufacturing sector

Final Description of KnowlEdge Repository (öffnet in neuem Fenster)

this deliverable updates D5.2

Data management plan (öffnet in neuem Fenster)

specifies how research data are handled during and after a research project

Bootstrapping on AI Models (öffnet in neuem Fenster)

this deliverable describes all the necessary procedures for execution of AI models in HPC or cloud environment

Pilot Evaluation methodology and implementation plan (öffnet in neuem Fenster)

Implementation and management plan

Project Manual (quality assurance and risk assessment) (öffnet in neuem Fenster)

helps the Consortium with quality assurance and identification of relevant quality standards and best practices and means to achieve them and supports the implementation of internal quality checks

User need specification and scenario definition [Initial/Updated/Final] (öffnet in neuem Fenster)

this report describes the knowlEdge scenarios based on the analysis of user needs. As part of the iterative methodology, the report is updated twice

Dissemination Roadmap & Activities (öffnet in neuem Fenster)

this deliverable provide the projects dissemination activities

Update on Exploitation strategy & IPR management (öffnet in neuem Fenster)

Updates the report on the project's Exploitation strategy & IPR management

Last report on dissemination activities (öffnet in neuem Fenster)
Exploitation Strategy & IPR Management (öffnet in neuem Fenster)

The deliverable describes how to facilitate the acceptance and utilisation by the market of the developed solutions

AI model Description (öffnet in neuem Fenster)

describe all the technologies and APIs to make AI models functional in the process environment

Training, Workshops, and Seminars (öffnet in neuem Fenster)

a report that documents all the workshops and seminars that were planned during the project, their contents and their goals

Generalized Automated Learning for Industrial Environments (öffnet in neuem Fenster)

this deliverable describes a multi-scale dynamic environment for autonomous learning and re-training of the AI models

Final Data Management and Data Quality modules (öffnet in neuem Fenster)

this deliverable will contain the final work done in task T3.2. In particular will describe the adopted approach, architecture and structure of the data quality and management modules with respect to the platform.

(Semi-)Automatic Knowledge Discovery for AI Model Generation (öffnet in neuem Fenster)

initial data analysis results including the description and evaluation of used methods

First report on dissemination activities (öffnet in neuem Fenster)
Initial Data Management and Data Quality modules (öffnet in neuem Fenster)

this deliverable will contain the initial work done in task T32 In particular will describe the initial approach architecture and structure of the data quality and management modules

Initial knowlEdge website (öffnet in neuem Fenster)

this deliverable provide a brief description of the initial projects website and is functionalities

Initial Site-wide Data Storage and Governance suit (öffnet in neuem Fenster)

provides the overview of the results produced in T3.3. This deliverable lists the data models, protocols and planned architecture of the components to be developed.

Human-AI Collaboration and Domain Knowledge Fusion (öffnet in neuem Fenster)

Describe the collaboration of humans with an automated AI pipeline.

Final Decision Support Framework (öffnet in neuem Fenster)

this deliverable updates D7.2.

Initial explainable mechanisms DFS (öffnet in neuem Fenster)

a prototype deliverable that documents the design and implementation of the integrated 2-Axis DSF, that encapsulates decision strategies and rules, KPIs, as well as a number of parameters that affect product and process quality.

Initial user-centric dashboards as enable explainable AI (öffnet in neuem Fenster)

a prototype deliverable that documents all the enhanced visualizations that support the decision making mechanisms of the 2-Axis DSF

Initial Provisioning and Deployment Management Tool (öffnet in neuem Fenster)

planned Concept, architecture and communication protocols that shall be developed as part of T6.3

Final site-wide data collection and integration toolkit (öffnet in neuem Fenster)

provides the overview of the results produced in T3.1. This deliverable updates on D3.1 with the details of the deployments and results.

Final knowlEdge Marketplace Platform (öffnet in neuem Fenster)

this deliverable updates D5.4

Full knowledge website (öffnet in neuem Fenster)

this deliverable provide a brief description of the full project website and is functionalities

Final Provisioning and Deployment Management Tool (öffnet in neuem Fenster)

this deliverable updates D6.4

Initial site-wide data collection and integration toolkit (öffnet in neuem Fenster)

provides the overview of the results produced in T31 This deliverable lists the data models protocols and planned architecture of the components to be developed

Final Site-wide Data Storage and Governance suit (öffnet in neuem Fenster)

provides the overview of the results produced in T3.3. This deliverable updates on D3.5 with the details of the deployments and results.

Final user-centric dashboards as enable explainable AI (öffnet in neuem Fenster)

this deliverable updates D7.4

Initial KnowlEdge Marketplace Platform (öffnet in neuem Fenster)

a public prototype deliverable that documents the architecture, the features and the capabilities of the knowlEdge marketplace

Evaluation results and KPI assessment (öffnet in neuem Fenster)

AI maturity tool results and KPI performance indicators (assessment framework). Describes the overall impact of the application of AI models on the pilot sites. These results are provided as open research data for others to access and re-use and may for example be used to validate results in scientific publications.

Veröffentlichungen

Towards Industry 5.0 – A Trustworthy AI Framework for Digital Manufacturing with Humans in Control

Autoren: Usman Wajid, Alexandros Nizamis, Victor Anaya
Veröffentlicht in: Proceedings of Interoperability for Enterprise Systems and Applications Workshops co-located with 11th International Conference on Interoperability for Enterprise Systems and Applications (I-ESA 2022), Ausgabe 2022, 2022, Seite(n) 6, ISSN 1613-0073
Herausgeber: CEUR

LOGIC: Probabilistic Machine Learning for Time Series Classification (öffnet in neuem Fenster)

Autoren: Fabian Berns, Jan David Hüwel, Christian Beecks
Veröffentlicht in: IEEE International Conference on Data Mining, Ausgabe 2021, 2021, Seite(n) 1000-1005, ISBN 978-1-6654-2398-4
Herausgeber: IEEE
DOI: 10.1109/icdm51629.2021.00113

Automated Kernel Search for Gaussian Processes on Data Streams (öffnet in neuem Fenster)

Autoren: Jan David Hüwel; Fabian Berns; Christian Beecks
Veröffentlicht in: IEEE International Conference on Big Data, Ausgabe 2021, 2021, Seite(n) 3584-3588, ISBN 978-1-6654-3902-2
Herausgeber: IEEE
DOI: 10.1109/bigdata52589.2021.9671767

knowlEdge Project –Concept, Methodology and Innovations for Artificial Intelligence in Industry 4.0 (öffnet in neuem Fenster)

Autoren: Alvarez-Napagao, Sergio; Ashmore, Boki; Barroso, Marta; Barrué, Cristian; Beecks, Christian; Berns, Fabian; Bosi, Ilaria; Chala, Sisay Adugna; Ciulli, Nicola; Garcia-Gasulla, Marta; Grass, Alexander; Ioannidis, Dimosthenis; Jakubiak, Natalia; Köpke, Karl; Lämsä, Ville; Megias, Pedro; Nizamis, Alexandros; Pastrone, Claudio; Rossini, Rosaria; Sànchez-Marrè, Miquel; Ziliotti, Luca
Veröffentlicht in: IEEE 19th International Conference on Industrial Informatics, Ausgabe 2021, 2021, Seite(n) 7, ISBN 978-1-7281-4395-8
Herausgeber: IEEE
DOI: 10.1109/indin45523.2021.9557410

Evaluating the Lottery Ticket Hypothesis to Sparsify Neural Networks for Time Series Classification (öffnet in neuem Fenster)

Autoren: Georg Stefan Schlake; Jan David Hüwel; Fabian Berns; Christian Beecks
Veröffentlicht in: IEEE International Conference on Data Engineering Workshops, Ausgabe 2022, 2022, Seite(n) 70-73, ISBN 978-1-6654-8104-5
Herausgeber: IEEE
DOI: 10.1109/icdew55742.2022.00015

Local Gaussian Process Model Inference Classification for Time Series Data (öffnet in neuem Fenster)

Autoren: Fabian Berns, Joschka Hannes Strueber, Christian Beecks
Veröffentlicht in: 33rd International Conference on Scientific and Statistical Database Management, Ausgabe 2021, 2021, Seite(n) 209-213, ISBN 978-1-4503-8413-1
Herausgeber: ACM
DOI: 10.1145/3468791.3468839

Anomaly Detection in Manufacturing (öffnet in neuem Fenster)

Autoren: Jona Scholz Maike Holtkemper Alexander Graß Christian Beecks
Veröffentlicht in: Artificial Intelligence in Manufacturing, Ausgabe 2024, 2024, Seite(n) 351-360, ISBN 978-3-031-46452-2
Herausgeber: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_20

Boosting AutoML and XAI in Manufacturing: AI Model Generation Framework (öffnet in neuem Fenster)

Autoren: Marta Barroso Daniel Hinjos Pablo A. Martin Marta Gonzalez-Mallo Victor Gimenez-Abalos Sergio Alvarez-Napagao
Veröffentlicht in: Artificial Intelligence in Manufacturing, Ausgabe 2024, 2024, Seite(n) 333-350, ISBN 978-3-031-46452-2
Herausgeber: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_19

Human-AI Interaction for Semantic Knowledge Enrichment of AI Model Output (öffnet in neuem Fenster)

Autoren: Sisay Adugna Chala Alexander Graß
Veröffentlicht in: Artificial Intelligence in Manufacturing, Ausgabe 2024, 2024, Seite(n) 43-54, ISBN 978-3-031-46452-2
Herausgeber: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_3

Designing Human and Artificial Intelligence Interactions in Industry X (öffnet in neuem Fenster)

Autoren: Stefan Walter
Veröffentlicht in: Service Design for Emerging Technologies Product Development, Ausgabe 21 July 2023, 2023, Seite(n) 207-232, ISBN 978-3-031-29306-1
Herausgeber: Springer, Cham
DOI: 10.1007/978-3-031-29306-1_12

Designing a Marketplace to Exchange AI Models for Industry 5.0 (öffnet in neuem Fenster)

Autoren: Alexandros Nizamis Georg Schlake Georgios Siachamis Vasileios Dimitriadis Christos Patsonakis Christian Beecks Dimosthenis Ioannidis Konstantinos Votis Dimitrios Tzovaras
Veröffentlicht in: Artificial Intelligence in Manufacturing, Ausgabe 2024, 2024, Seite(n) 27-41, ISBN 978-3-031-46452-2
Herausgeber: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_2

A Manufacturing Digital Twin Framework (öffnet in neuem Fenster)

Autoren: Victor Anaya Enrico Alberti Gabriele Scivoletto
Veröffentlicht in: Artificial Intelligence in Manufacturing, Ausgabe 2024, 2024, Seite(n) 181-193, ISBN 978-3-031-46452-2
Herausgeber: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_10

Advancing Networked Production Through Decentralised Technical Intelligence (öffnet in neuem Fenster)

Autoren: Stefan Walter Markku Mikkola
Veröffentlicht in: Artificial Intelligence in Manufacturing, Ausgabe 2024, 2024, Seite(n) 281-300, ISBN 978-3-031-46452-2
Herausgeber: Springer Nature Switzerland
DOI: 10.1007/978-3-031-46452-2_16

Production Scheduling Optimization enabled by Digital Cognitive Platform (öffnet in neuem Fenster)

Autoren: Konstantinos Georgiadis, Alexandros Nizamis, Thanasis Vafeiadis, Dimosthenis Ioannidis, Dimitrios Tzovaras
Veröffentlicht in: Procedia Computer Science, Ausgabe 204, 2022, Seite(n) 424-431, ISSN 1877-0509
Herausgeber: Elsevier
DOI: 10.1016/j.procs.2022.08.052

Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms (öffnet in neuem Fenster)

Autoren: Fabian Berns, Jan Hüwel, Christian Beecks
Veröffentlicht in: SN Computer Science, Ausgabe 3 (4), 2022, Seite(n) 300, ISSN 2661-8907
Herausgeber: Springer Nature
DOI: 10.1007/s42979-022-01186-x

AI Lifecycle Zero-Touch Orchestration within the Edge-to-Cloud Continuum for Industry 5.0 (öffnet in neuem Fenster)

Autoren: Alberti, Enrico; Alvarez-Napagao, Sergio; Anaya, Victor; Barroso, Marta; Barrué, Cristian; Beecks, Christian; Bergamasco, Letizia; Chala, Sisay Adugna; Gimenez-Abalos, Victor; Graß, Alexander; Hinjos, Daniel; Holtkemper, Maike; Jakubiak, Natalia; Nizamis, Alexandros; Pristeri, Edoardo; Sànchez-Marrè, Miquel; Schlake, Georg; Scholz, Jona; Scivoletto, Gabriele; Walter, Stefan
Veröffentlicht in: Systems, Ausgabe 12, 48, 2024, Seite(n) 32, ISSN 2079-8954
Herausgeber: MDPI
DOI: 10.3390/systems12020048

Explaining the Behaviour of Reinforcement Learning Agents in a Multi-Agent Cooperative Environment Using Policy Graphs (öffnet in neuem Fenster)

Autoren: Domenech i Vila, M.; Gnatyshak, D.; Tormos, A.; Gimenez-Abalos, V.; Alvarez-Napagao, S.
Veröffentlicht in: Electronics, Ausgabe 13(3), 573, 2024, Seite(n) 19, ISSN 2079-9292
Herausgeber: MDPI
DOI: 10.3390/electronics13030573

Impacts of AI driven manufacturing processes on supply chains: the contributions of the knowlEdge project (öffnet in neuem Fenster)

Autoren: Stefan Walter
Veröffentlicht in: Transportation Research Procedia, Ausgabe 72, 2023, Seite(n) 3443-3449, ISSN 2352-1465
Herausgeber: Elsevier
DOI: 10.1016/j.trpro.2023.11.773

AI impacts on supply chain performance : a manufacturing use case study (öffnet in neuem Fenster)

Autoren: Stefan Walter
Veröffentlicht in: Discover Artificial Intelligence, Ausgabe 3:28, 2023, ISSN 2731-0809
Herausgeber: Springer Nature
DOI: 10.1007/s44163-023-00061-9

Testing Reinforcement Learning Explainability Methods in a Multi-Agent Cooperative Environment (öffnet in neuem Fenster)

Autoren: Domènech Vila, Marc; Gnatyshak, Dmitry; Tormos Llorente, Adrián; Álvarez Napagao, Sergio
Veröffentlicht in: Frontiers in Artificial Intelligence and Applications, Ausgabe Volume 356: Artificial Intelligence Research and Development, 2022, Seite(n) 355-364, ISSN 0922-6389
Herausgeber: IOS Press
DOI: 10.3233/faia220358

Suche nach OpenAIRE-Daten ...

Bei der Suche nach OpenAIRE-Daten ist ein Fehler aufgetreten

Es liegen keine Ergebnisse vor

Mein Booklet 0 0