Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and Machine Learning

Descripción del proyecto

Nuevos sistemas para las actuales aplicaciones basadas en datos

La infraestructura para la gestión de datos está creciendo rápidamente. Para obtener predicciones precisas, las aplicaciones modernas basadas en datos aprovechan las grandes y heterogéneas recolecciones de datos para desvelar patrones interesantes. También desarrollan robustos modelos de aprendizaje automático para realizar predicciones precisas. En consecuencia, los nuevos sistemas se han desarrollado con computaciones tradicionales y de alto rendimiento, y con la arquitectura de agrupaciones de «hardware» subyacentes. También existe una tendencia hacia complejos canales de análisis de datos que combinan diferentes sistemas. El proyecto DAPHNE, financiado con fondos europeos, definirá una infraestructura de sistemas extensible y abierta para canales de análisis de datos integrados. Desarrollará una implantación de referencia para abstracciones de lenguajes (API y lenguaje específico de dominio) y representaciones intermedias, así como técnicas de ejecución y compilación.

Objetivo

Modern data-driven applications leverage large, heterogeneous data collections to find interesting patterns, and build robust machine learning (ML) models for accurate predictions. Large data sizes and advanced analytics spurred the development and adoption of data-parallel computation frameworks like Apache Spark or Flink as well as distributed ML systems like MLlib, TensorFlow, or PyTorch. A key observation is that these new systems share many techniques with traditional high-performance computing (HPC), and the architecture of underlying HW clusters converges. Yet, the programming paradigms, cluster resource management, as well as data formats and representations differ substantially across data management, HPC, and ML software stacks. There is a trend though, toward complex data analysis pipelines that combine these different systems. Examples are workflows of distributed data pre-processing, tuned HPC libraries, and dedicated ML systems, but also HPC applications that leverage ML models for more cost-effective simulation. Major obstacles are (1) limited development productivity for integrated analysis pipelines due to different programming models, and separated cluster environments, (2) unnecessary data movement overhead and underutilization due to separate, statically provisioned clusters, and (3) lack of a common system infrastructure with good interoperability. For these reasons, DAPHNE’s overall objective is the definition of an open and extensible systems infrastructure for integrated data analysis pipelines. We aim at building a reference implementation of language abstractions (i.e. APIs and a domain-specific language), an intermediate representation, as well as compilation and runtime techniques with support for integrating and scheduling heterogeneous accelerator and storage devices. A variety of real-world, high-impact use cases, datasets, and a new benchmark will be used for qualitative and quantitative analysis compared to state-of-the-art.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

RIA - Research and Innovation action

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-ICT-2018-20

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

KNOW CENTER RESEARCH GMBH
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 737 732,50
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 737 732,50

Participantes (13)

Mi folleto 0 0