Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Artificial Intelligence for Lyrics Comprehension

Description du projet

Analyser les paroles des chansons pour un streaming musical personnalisé

La science des données et l’apprentissage automatique sont en train de révolutionner le secteur de la musique. Les algorithmes basés sur l’intelligence artificielle (IA) permettent de diffuser de la musique en continu en fonction des préférences des utilisateurs. Actuellement, les listes de lecture centrées sur l’utilisateur reposent sur des systèmes de recommandation qui considèrent les similitudes entre des chansons identifiées par leurs ondes sonores. La classification est basée sur les étiquettes conventionnelles des chansons (auteur, genre, période ou, dans certains cas, humeur) et sur le marquage collaboratif des utilisateurs. Les paroles des chansons ne sont donc pas prises en compte. Ce projet LyrAIcs, financé par le CER, développera un moteur de recommandation basé sur l’IA (API de service web) pour analyser les paroles de chansons en utilisant les algorithmes du projet POSTDATA comme base technique.

Objectif

The age of machine learning and data analytics have changed the habits of entertainment. Recommendation systems have been improving in the last years, with relevant commercial purposes, and many top-level companies –such as Amazon, Google or Netflix- are investing high amounts of money in improving their algorithms based on Artificial Intelligence. The case of music has been especially relevant, as the market has drastically changed in the last 10 years, moving towards a user-centric streaming model, where user preferences make the difference and dynamic playlists are the key of streaming success. Recommenders are built based on three main strategies:
1) similarities between songs that are identified by their soundwaves;
2) classification using conventional tags for songs, such as author, genre, period or, in some cases, mood; and
3) collaborative tagging by users.
In this context, song lyrics (the text of songs) are barely considered for the improvement of these strategies. Moreover, recommendations based on lyrics are done by hand with uneven criteria and filters. This Proof of Concept proposes the creation of an AI based recommendation engine (i.e. web service API) for analyzing song lyrics using POSTDATA ERC Project algorithms as its technical scaffold. Natural Language Processing tools for poetry analysis will be used to build a web service API to process lyrics and extract knowledge as additional metadata to enrich the companies´recommender systems. This approach will open an exciting opportunity to contribute to boosting the music entertainment world using artificial intelligence and language technologies.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-POC - Proof of Concept Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2020-PoC

Voir tous les projets financés au titre de cet appel

Institution d’accueil

IE UNIVERSIDAD
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 150 000,00
Adresse
CALLE CARDENAL ZUNIGA 12
40003 Segovia
Espagne

Voir sur la carte

Région
Centro (ES) Castilla y León Segovia
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0