Description du projet
Des interfaces hybrides pour les technologies de l’information et de la communication à l’échelle nanométrique
Le projet SINFONIA, financé par l’UE, entend développer une technologie permettant le stockage et le transport d’information à l’échelle nanométrique et à des fréquences de fonctionnement de l’ordre du térahertz. Cette technologie sera conçue en manipulant des interfaces hybrides formées par des molécules organiques et des matériaux antiferromagnétiques. Les chercheurs exploiteront les états hybrides créés à ces interfaces hybrides de faible dimension, en couplant un stimulus optique externe à la propagation de perturbations magnétiques (ondes de spin). Contrairement à la technologie CMOS conventionnelle, cette nouvelle approche informatique présente une consommation d’énergie exceptionnellement faible car elle ne fait pas appel à des courants électriques ou à des électrodes pour stocker et transmettre les informations.
Objectif
SINFONIA - Selectively activated INFOrmation technology by hybrid Organic Interfaces is an interdisciplinary research project that envisions a technology allowing to store and transport information on the nanometer length scale and at operational frequencies in the THz regime. Such a technology will be realized through an optical manipulation of hybrid molecular/antiferromagnetic interfaces, which will enable a selective activation of information emitters and detectors. Such a selectivity will be ensured by the local nature of the hybridized electronic states that develops at the interface between an antiferromagnet (AF) and a molecular system. The main objective of SINFONIA is to exploit the hybridized states created at such interfaces to couple an external optical stimulus to the propagation of magnetic perturbations (namely spin waves) in the AF layer. This way, SINFONIA proposes a completely new approach to information technology, based on hybrid organic/inorganic low-dimensional systems. Among the breakthroughs offered by such a change of paradigm, there are: low power consumption (no electrical currents), high-frequency responses (ensured by AF materials), tunability (ensured by molecular materials), scalability and miniaturization, on account of the intrinsic low-dimensionality of our interface-based approach. SINFONIA also envisions the long-term perspective of realizing fully organic devices, thurough the development of organic AF films. The proof-of-concept of the proposed technological approach will be sought in the development of magnonics prototypical devices, such as logic gates. Magnonics is widely recognised as one of the most promising technological approaches to go beyond CMOS technology, which represents the state-of-the-art in information and communication technology.
Mots‑clés
Programme(s)
Régime de financement
RIA - Research and Innovation actionCoordinateur
20133 Milano
Italie