Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

ROBOtic Replicants for Optimizing the Yield by Augmenting Living Ecosystems

Project description

Robots to the rescue of the queen bee

As the world’s most successful pollinators, bees play a huge part in every aspect of the ecosystem. So, any decline in bee populations could pose a threat to global agriculture. In this context, the EU-funded RoboRoyale project is developing and combining micro-robotic, biological and machine learning technologies into a system that can support the well-being of the honeybee queen, which is responsible for the reproductive success and efficiency of a colony. Specifically, the micro-robotic system will operate around the queen. For instance, this multi-robot system will replace the court bees that are in charge of feeding, grooming and cleaning of the queen as well as the facilitation of pheromone transfer from the queen to the workers.

Objective

Earth's ecosystems are in a rapid decline of species diversity and abundance. One of the most affected groups is honeybees, a keystone species that play a key role in pollination and hence crucial for ecosystem stability. The goal of the RoboRoyale project is to develop and combine micro-robotic, biological, and machine learning technologies into a system that can support the well-being of the honeybee queen, the single key individual responsible for the reproductive success and efficiency of the colony. The core of the project is the development of a micro-robotic system, designed to operate around the queen. This multi-robot system will replace the “court bees” that are in charge of feeding, grooming and cleaning of the queen as well as the facilitation of pheromone transfer from the queen to the workers. Through a combination of machine learning, behavioral modeling and advanced control methods, our system will gradually learn how to groom the queen in order to regulate her egg-laying activity and pheromone production to optimize the hive’s macroscopic variables (e.g. brood production) in a scientifically and ecologically informed way. The developed bio-hybrid system will serve as an important scientific tool to study honeybee biology, to support the honeybee colony health and efficiency, and to provide a stabilizing factor on the surrounding ecosystem. Moreover, showing that one can achieve a positive impact on large scale ecosystems by using microrobots to affect one single living organism, will bring radical new insights into novel possibilities of bio-hybrid technology. Although risky, the potential impact of the project will lead to foundational scientific and biotechnological approaches to synthesize symbiotic super-organisms of cooperating robots and animals. The interdisciplinary nature of the project will pave the way towards microscopic bio-compatible sensors and actuators needed to realize game-changing bio-medical, robotic and automotive systems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETOPEN-2018-2020

See all projects funded under this call

Coordinator

UNIVERSITY OF DURHAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 085 269,00
Address
STOCKTON ROAD THE PALATINE CENTRE
DH1 3LE DURHAM
United Kingdom

See on map

Region
North East (England) Tees Valley and Durham Durham CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 085 269,00

Participants (4)

My booklet 0 0