Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Dual-comb laser driven terahertz spectrometer for industrial sensing

Project description

Novel technology lights the way to cost-effective terahertz investigation of materials

Among the many useful light–matter interactions is the absorption of different wavelengths of light by different ions or molecules. Optical absorption spectroscopy takes advantage of this phenomenon to provide fundamental information about materials without contacting, altering or harming the material of interest. The applications are virtually limitless. Optical absorption spectroscopy in the terahertz region of the electromagnetic spectrum takes all existing advantages to a new level and adds more. However, the driving laser is currently quite costly and complex. The EU-funded DC-THz project is planning to remedy that with its pioneering laser technology.

Objective

Optical absorption spectroscopy is a key enabling technology for contact-free and non-destructive identification of materials. Since these measurements allow for identifying defects or contaminants in products, they are used in many industries. Examples include testing of polymers, coatings and paints, pharmaceuticals, foods, and semiconductor devices for electronics. Optical spectroscopy also has emerging applications in environmental monitoring, security, and medical diagnostics. Light in the terahertz region of the electromagnetic spectrum (frequencies from 0.1 – 10 THz) is particularly attractive for all these applications because of its remarkable properties: it can be transmitted through many materials, allowing for inspection of products inside their packaging; its interaction with matter leaves unique spectral fingerprints, enabling identification of the molecules present; and it offers good resolution, enabling imaging applications. However, a significant challenge for existing industrial terahertz spectroscopy systems is the high cost and complexity of the driving laser. In this ERC-PoC project, we will resolve these problems by leveraging our recently-demonstrated breakthrough dual-comb laser technology. These patented dual-comb lasers produce asynchronous high-power femtosecond pulses from a single laser cavity. This solution combines higher performance and lower complexity compared to the alternative technologies. The goal of the ERC-PoC is to deploy these advantages in the context of terahertz spectroscopy to enable faster measurements and lower costs, and take important steps to commercialization. We will develop a prototype industrial terahertz spectrometer, measure test samples with research and industrial collaborators, and find initial product-market fit for commercializing the spectrometer.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-PoC

See all projects funded under this call

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0