Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

An in-memory dataflow accelerator for deep learning

Descripción del proyecto

Redes neuronales profundas mejoradas por un acelerador de computación en memoria

El internet de las cosas (IdC), la informática y la electrónica son tecnologías que desempeñan un papel cada vez más importante en la vida cotidiana, por lo que muchas personas buscan aportar mejoras y avances en estos campos. Las redes neuronales profundas —una tecnología inspirada en las redes neuronales biológicas y compuesta por unidades de procesamiento paralelas, denominadas neuronas, que están conectadas por sinapsis plásticas— se han utilizado mucho recientemente en los centros de procesamiento de datos en la nube, así como en otros servicios del IdC. Lamentablemente, sigue siendo una tecnología ineficiente debido a la necesidad de procesar millones de valores de peso sináptico. El proyecto MEMFLUX, financiado con fondos europeos, desarrollará un prototipo de acelerador de computación en memoria adaptado a la inferencia de redes neuronales profundas de latencia y consumo ultrabajos.

Objetivo

Deep neural networks (DNNs), loosely inspired by biological neural networks, consist of parallel processing units called neurons interconnected by plastic synapses. By tuning the weights of these interconnections, these networks are able to perform certain cognitive tasks remarkably well. DNNs are being deployed all the way from cloud data centers to edge servers and even end devices and is projected to be a tens of billion Euro-market just for semiconductor companies in the next few years. There is a significant effort towards the design of custom ASICs based on reduced precision arithmetic and highly optimized dataflow. However, one of the primary reasons for the inefficiency, namely the need to shuttle millions of synaptic weight values between the memory and processing units, remains unaddressed. In-memory computing is an emerging computing paradigm that addresses this challenge of processor-memory dichotomy. For example, a computational memory unit with resistive memory (memristive) devices organized in a crossbar configuration is capable of performing matrix-vector multiply operations in place by exploiting the Kirchhoff’s circuits laws. Moreover, the computational time complexity reduces to O(1). The goal of this project is to prototype such an in-memory computing accelerator for ultra-low latency, ultra-low power DNN inference.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-POC - Proof of Concept Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2020-PoC

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

IBM RESEARCH GMBH
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 150 000,00
Dirección
SAEUMERSTRASSE 4
8803 RUESCHLIKON
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Nordwestschweiz Aargau
Tipo de actividad
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0