Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

An in-memory dataflow accelerator for deep learning

Descrizione del progetto

Reti neurali profonde migliorate da un acceleratore di calcolo in-memory

Insieme all’Internet delle cose (IoT), l’informatica e l’elettronica sono tecnologie che assumono un ruolo sempre più importante nella vita quotidiana; sono molti quindi che cercano di realizzare miglioramenti e progressi in questi campi. La tecnologia delle reti neurali profonde, ispirata alle reti neurali biologiche e composta da unità di elaborazione parallele chiamate neuroni doppiati che sono collegati da sinapsi plastiche, ha recentemente registrato un largo impiego nei centri di elaborazione dati in cloud, così come in diversi altri servizi IoT. Purtroppo, è ancora inefficiente a causa della necessità di elaborare milioni di valori di peso sinaptico. Il progetto MEMFLUX, finanziato dall’UE, svilupperà un prototipo di acceleratore di calcolo in-memory fatto su misura per l’inferenza delle reti neurali profonde a bassissima latenza e a bassissima potenza.

Obiettivo

Deep neural networks (DNNs), loosely inspired by biological neural networks, consist of parallel processing units called neurons interconnected by plastic synapses. By tuning the weights of these interconnections, these networks are able to perform certain cognitive tasks remarkably well. DNNs are being deployed all the way from cloud data centers to edge servers and even end devices and is projected to be a tens of billion Euro-market just for semiconductor companies in the next few years. There is a significant effort towards the design of custom ASICs based on reduced precision arithmetic and highly optimized dataflow. However, one of the primary reasons for the inefficiency, namely the need to shuttle millions of synaptic weight values between the memory and processing units, remains unaddressed. In-memory computing is an emerging computing paradigm that addresses this challenge of processor-memory dichotomy. For example, a computational memory unit with resistive memory (memristive) devices organized in a crossbar configuration is capable of performing matrix-vector multiply operations in place by exploiting the Kirchhoff’s circuits laws. Moreover, the computational time complexity reduces to O(1). The goal of this project is to prototype such an in-memory computing accelerator for ultra-low latency, ultra-low power DNN inference.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-POC - Proof of Concept Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2020-PoC

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

IBM RESEARCH GMBH
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 150 000,00
Indirizzo
SAEUMERSTRASSE 4
8803 RUESCHLIKON
Svizzera

Mostra sulla mappa

Regione
Schweiz/Suisse/Svizzera Nordwestschweiz Aargau
Tipo di attività
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0