Project description
An innovative scaffold for cell culture
Regenerative medicine entails the repair, replacement or restoration of damaged cells or tissues. Key to this strategy is the effective culture of stem or differentiated cells in vitro. To address technical issues associated with in vitro cell cultures, the EU-funded PiezoGel project has developed a novel system that combines a cell-supporting hydrogel with piezoelectric peptides capable of generating electrical energy in response to mechanical deformation. Researchers will optimise the PiezoGel technology for the in vitro growth of organoid cultures as well as for stem cell differentiation. Future applications include tissue regeneration and drug development.
Objective
Tissue regeneration has emerged as a promising novel therapy for various disease conditions. A key requirement for the implementation of this advanced approach is the efficient, reliable and reproducible growth of 3D cell cultures, including organoid structures. State-of-the-art 3D culture media support the growth of such cultures, yet exhibit several key setbacks, including low reproducibility and limited modularity. Moreover, no commercial piezoelectric media are currently available, thus prohibiting the option of inducing electrical stimulation of the cells via mechanical stimuli, similar to the in vivo function of several tissues. Here, we aim to develop PiezoGel, a biocompatible, reproducible, controllable and piezoelectric medium for 3D cell cultures. The newly-designed medium will be based on two components, a cell-supporting hydrogel and a piezoelectric self-assembled peptide structure. In the scope of the BISON-694426 Advanced ERC project, we identified promising molecular building blocks for each of these components. The Proof of Concept project will focus both on technological development of the PiezoGel matrix and on business feasibility. Thus, the formulation of the newly-designed cell medium will be optimized, and the resulting matrix will be examined for various properties, including mechanical rigidity and piezoelectricity. The growth of diverse organoid cultures, as well as stem cell differentiation, will be further tested and calibrated. Relevant stakeholders will be approached allowing to map the product requirements and expected features directly from the users. In parallel, the regulatory compliance of the PiezoGel medium will be verified, and the relevant material and methodologies will be patented. We envision diverse applications for the PiezoGel technology, including establishing 3D cell cultures as drug development platforms, basic research exploration, and further advancement of the tissue regeneration field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine pharmacology and pharmacy drug discovery
- natural sciences biological sciences biochemistry biomolecules
- medical and health sciences medical biotechnology cells technologies stem cells
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering piezoelectrics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69978 Tel Aviv
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.