Project description
A new direct detection Swift camera
The analysis of complex molecular structures plays an important role in biochemistry, molecular biology and pharmaceutics. The world’s first low-energy detection system optimised for cryo-electron microscopy (CryoEM) is in the making. The EU-funded DeCEMIS project will provide users with more democratised access to CryoEM technology in the fields of life and material sciences. CryoEM is becoming the gold standard method for molecular structural analysis. Using a new direct detection Swift camera, based on a high-speed, wafer scale CMOS image sensor, the project will enable high-quality molecular structure determination with a new series of 100 keV entry-level transmission electron microscopes. These will realise large savings potential for CryoEM users while maintaining similar performance compared to high-end 300 keV CryoEM microscopes.
Objective
DeCEMIS will bring to full technical maturity and commercial readiness the world’s first low energy detection system optimized for Cryo Electron Microscopy (CryoEM). CryoEM is an emerging and key enabling technology for reliable and cost-effective structural molecular analysis.
The DeCEMIS FTI project will give more users world-wide access to CryoEM, leading to the development of new drugs and vaccines in Life Sciences and next generation of solar cells, batteries and catalysts in Material Sciences.
CryoEM is becoming the gold standard for molecular structural analysis. Compared to alternative existing structural methods (e.g. X-ray crystallography or Nuclear Magnetic Resonance), CryoEM offers higher analysis flexibility and accuracy, particularly for heterogenous and radiation sensitive samples such as proteins and polymers. Among other achievements, CryoEM recently determined the first ever molecular structure of the COVID19 spike protein, providing key information for development of vaccines.
Today, high-quality CryoEM structures are most commonly obtained using high energy, 300 keV microscopes, which due to their complexity and cost are accessible to only a limited number of research laboratories worldwide.
Our innovative, direct detection Swift camera, based around a high-speed, wafer-scale CMOS image sensor, will enable high-quality molecular structure determination using less expensive 100keV CryoEM microscopes at a competitive price-to-performance ratio. By maturing our prototype for commercialization, the DeCEMIS project will pave the way for a new series of more affordable 100 keV Transmission Electron Microscopes with accessible, high-quality detection, aimed at making cryoEM available to more scientists.
Commercialisation of the Swift direct detection camera will accelerate democratization of CryoEM for more applications while realizing large savings potential for CryoEM users.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences geology mineralogy crystallography
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy electron microscopy
- natural sciences chemical sciences polymer sciences
- natural sciences chemical sciences catalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EC - Horizon 2020 Framework Programme
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-EIC-FTI-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08010 Barcelona
Spain
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.