Objective
An extensive study of the properties of powder metallurgy Al-Si alloys was carried out. The effect of atomization parameters on the power properties, such as their compressibility, were highlighted. We studied the relation between processing parameters as lubrication route (wax addition or die wall lubrication), dewaxing, preheating and forging temperature, which contributed to optimizing the densification parameters for this kind of alloys and powder characteristics. Mechanical properties were determined by tensile and fatigue testing. The results obtained are consistent with other published research work. Unfortunately, we obtained lower values for fatigue tests than expected, due to an unwanted contamination of the original powders by pure Al particles decreasing the fatigue properties. Furthermore, we can note the low toughness of these materials, which has to be accounted (7.0 Mpa m) for while designing structural parts as con-rods. An interesting result concerns the study of tribological behaviour of Al-17Si-5Fe-3.5Vu-1.1Mg-0.6Zr B alloy. This material exhibits very good wear and friction behaviour when in contact with steel, even very hard steel (667 HV). This result can be exploited for further applications.
With regards to the component developed throughout this project, further forging tests would be necessary to perfect the development of the direct forged Al powder metallurgy connecting-rod using industrial equipment.
At the present time, a new code has been developed in order to facilitate the tool design and to predict the densification of such components produced from powders. This code is a 3D compressible viscoplastic version of Forge3 taking into account the thermal coupling and will soon be launched on the market.
The simulation of price for such a component leads to an average value of 5.2 ECU, which is higher than conventional steel products but could be considered with the need of fuel consumption reduction of future cars. This price simulation means that only the holes of the big and small ends and the faces are machined after forging.
This project covers several aspects from the characterization of powder metallurgy (PM) aluminium alloys, the modelling and tools development of a cost-effective shaping process (direct powder forging), to the production of automotive components and their testing.
Direct powder forging of Al high performance alloys offers interesting perspectives for developing low weight automotive components through a combination of the advantages of Al-Si-XPM materials (high strength, low thermal expansion, wear resistance) with the benefits of PM processing, this is net-shaping (high materials yield, reduced processing and machining steps). The implementation of advanced Al PM components engines can reduce the weight of present cast moving parts and thus reduce the polluting emissions of engines. In regard to cast components, significant weight reductions (minimum 30%) and new design are expected for Al automotive components.
The first stage of our work will consist in characterizing the microstructural, physical and mechanical properties of the Al-Si-XPM alloys investigated in this project (material development).
The second and third stages will be optimization of the part geometry, modelling and optimization of the forging parameters (direct powder forging), tool design (processing development), and production of parts for mechanical and engine testing (component development). Cost evaluation for a series production will be considered.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering tribology lubrication
- engineering and technology mechanical engineering manufacturing engineering subtractive manufacturing
- natural sciences chemical sciences inorganic chemistry post-transition metals
- engineering and technology environmental engineering energy and fuels
- engineering and technology materials engineering metallurgy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
92109 Boulogne-Billancourt
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.