The influence of the ocean on the climate of the North Atlantic European region has been extensively investigated through the use of coordinated experiments with four different atmospheric General Circulation Models. Multidecadal ensemble simulations were carried out in which the models were forced with a reconstruction of historical variations in sea surface temperatures (SST). The ensembles were first used to quantify the potential predictability of climate fluctuations.
This analysis revealed that potential decadal predictability is highest in the summer season both for tropical and extra-tropical parts of the North Atlantic European (NAE) region. In summer (winter), roughly 60% (50%) and 30% (20%) of the variance is potentially predictable for the tropical and extra-tropical parts of the NAE region respectively. There are, however, significant differences between estimates of potential predictability from different atmosphere models, particularly in spring and autumn.
An optimal detection methodology was applied to the ensemble simulations to determine the space-time characteristics of the oceanic influence on NAE climate. It has been shown that the ocean exerts an important influence on multidecadal timescales as well as on interannual timescales. Multidecadal variations in Atlantic SST, which may be driven by the thermohaline circulation, modulate European climate. The pattern of the atmospheric response in winter has a strong projection on the North Atlantic Oscillation pattern. On interannual timescales NAE climate is influenced by ENSO but also by Atlantic SST. Notably, PREDICATE results indicate that the relative importance of these two influences is modulated by the multidecadal variation of Atlantic SST.
To clarify the specific role of the Atlantic ocean in NAE climate additional experiments were carried out in which the models were forced by idealised patterns of Atlantic SST anomalies. The SST anomalies were identified from observations as those most likely to induce a significant response. A key finding is that, contrary to expectations, the response to the SST forcing is very consistent between the different atmosphere models. In many cases, the uncertainty is significantly less than the signal strength. The magnitude of the response is generally smaller than the interannual variability but is sufficient to be of clear importance for understanding and predicting decadal variability.