Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-04-30

Equivariant riemann-roch type theorems in arakelov geometry

Objetivo



Research objectives and content
Let f be a molphism between algebraic schemes. The theorerms of Grothendieck- and Lefschetz-Riemaml-Roch allow to compute the push-forward morphism induced by f on algelbraic K-groups. The theorem of Grothendieck-Riemann-Roch has been genelalized in two directions. On the one hand, one can consider an equivariant situation where a group scheme G acts on all objects involved. On the other hand, there is an arithmetic Riemann-Roch theorem in the context of Arakelov geometry. The objective of the project is to develop the basic setup of Arakelov geometry and arithmetic K-theory in an equivariant context and to give generalizations of the Lefschetz-Riemann-Roch and the equivariant Grothendieck-Riemann-Roch the- Orems. More concretely, the aim is to consider the following points: ? Define equivariant arithmetic K-groups of arithmetic G-schemes and establish their basic properties (products. A-structure. etc.). ? Define an equivariant determinant of cohomology and equip it with a.Quillen metric. More generally define a push forward morphism on equivariant arith- metic K-groups and establish its basic functorial properties. For example, is there an excess intersection formula? ? Find and prove arithmetic Lefschetz-Riemann-Roch formulas and an equivari- ant arithmetic Grothendieck-Riemann-Roch theorem. Is there a localization theorem for euivariant arithmetic K-groups? It is planned to consider in a first step simple situations like relative curves and projective spaces and to put restrictive conditions on the group schemes.
Training content (objective, benefit and expected impact)
In the last years. there has been increasing interest in equivariant and arithmetic Riemann-Roch theorems. The project will allow me to enter this very active area of research. It will benefit from my experience with the methods of Arakelov geometry from my previous work. It is intendend to improve my knowledge of representation theory and equivaliant geometry The special program on 'Arithmetic Geometry' at the Newton institute provides the right atmosphere to work on the proposed project.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

Datos no disponibles

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

RGI - Research grants (individual fellowships)

Coordinador

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Aportación de la UE
Sin datos
Dirección
Clarkson Road 20
CB3 0EH CAMBRIDGE
Reino Unido

Ver en el mapa

Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Participantes (1)

Mi folleto 0 0