Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-04-30

Understanding the ph dependent catalytic activity in a model enzyme using protein electrostatics and protein engineering

Objective



Research objectives and content
In this project we propose to study the pH dependent electrostatic contribution to the pH-activity profile of a model enzyme, Fusarium solani pisi cutinase, as well as charge mutants thereof, with the goal of understanding in more detail one of the most important effects contributing to the pH-dependency of enzyme activity. We will use rational Protein Engineering to introduce, remove or move charges that we believe contribute to the pH activity profile. In all three cases we will substitute one residue in the native chain with another, and the residue to be changed will either be the charged residue or the neighboring residue. By modifying the latter we can move the charge without changing the nature of the charged residue. For all mutants we will measure the pH-activity profile using a standard lipolytic assay. We will also investigate the activity changes that accompany the changes in the media composition and correlate the observations to shifts in the electrostatic environment, that will be mapped on the molecular surface each protein (native and mutants). The 3D structures of the mutants will be solved in an X-ray laboratory collaborating with the host institution. ITC measurements will allow us to do thermodynamic studies of cutinase interactions (both native and mutated cutinase) with its substrats and inhibitors. DSC will be used in order to study structural transitions in native and mutated cutinase, as a function of time and temperature, in the absence and presence of substrat and inhibitors. Both measurements will be obtained under different media composition, where the electrostatic properties changed These studies will give us valuable novel insight into protein structure-function relationship.
Training content (objective, benefit and expected impact)
The overall aim of the present project is to develop better models for the description of electrostatic effects on protein activity, namely on the pH-activity profile of the enzyme. This meets the goals of the biotechnological and pharmaceutical science and industry to establish an atomic understanding of protein function. Since cutinase is an enzyme which is secreted by phytopathogenic fungi and bacteria in order to invade and infect plants, we envision that such knowledge could be of direct significance for the design and composition of anti-fungal and bacterial agents, and in a broader sense lead to generic knowledge broadly applicable to a host of relevant protein structure function questions central to the European industry and science.
Links with industry / industrial relevance (22)
Cooperating Partners in Related Projects:
UNILEVER, PHARMACIA, EUROPEAN GENENCOR

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RGI - Research grants (individual fellowships)

Coordinator

Ålborg Universitetscenter
EU contribution
No data
Address
57,Sohngårdsholmsvej
9000 Ålborg
Denmark

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0