Objective
The aim of this project is to conceive and implement electronic architectures that are able to merge sensory information sampled through different modalities into a unified perceptual representation of our environment. The architectural design will be based on the biological principles of sensory receptor and nervous system function. At a higher cognitive level, this representation of the proximal environmental space will be largely independent of the selected sensory substrates. A major objective of the project would be to enable a system to reconfigure itself, forming supplementary cross-connections between the sensory receptor level of a given type and the higher stages of processing specific to another sensory modality. The ambition is to create new senses to supplement the existing senses e.g. allow one to see the thunder or hear the lightning.
DESCRIPTION OF WORK
The brain is able to extract correlated information from sensory representations elaborated simultaneously using different sensory modalities. The "sense maker" system will choose a minimal set of sensory modalities from a predefined library, the combination of which will lead to reliable object/environment discrimination and identification.
The natural senses to be considered for emulation are vision, audition, and hepatic senses, and internal representation of motor command. The composite perceptual system, to be investigated using neuromimetic modelling and implemented using programmable mixed-analogue digital ASICs, will adapt its computational architecture as a function of unpredicted changes in the environment, or when faced with the partial impairment of some sensors. The sense-maker system will be composed of several stages, modelled on biological architectural principles: The lower level will correspond to different sensory input layers, each associated with a single modality (visual, auditory, electro reception), working in parallel.
An intermediate stage will regulate input-output transfer within each modality channel, depending on the rate of change in the input message, motor/probing activity and the immediate need for resource allocation for internal processing. The artificial system to be designed and implemented would include an additional layer in order to bind and store, in a reversible manner, the most frequent cross-sensory associations and the most predictable context gathered from recent statistics taken from the environment. Associative plasticity rules would be inspired from biological spike-timing dependent plasticity algorithms studied in mammalian neocortex, and used to store long-term memories. The topmost layer will constitute the intelligent processor of the analyser, and decides how to distribute the focus of attention and hence computational power allocation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- humanities arts architectural design
- social sciences sociology social issues social inequalities
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
BT52 1SA COLERAINE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.