Skip to main content

Neutron stars as a laboratory for dense matter

Article Category

Article available in the folowing languages:

Einblicke in Neutronensterne

EU-finanzierte Physiker haben Einblicke in das Innere von Neutronensternen gewonnen, indem sie Beobachtungen mit theoretischen Berechnungen kombinierten, um herauszufinden, was in diesen ultra-dichten Überresten von Sternen für Materie zu finden ist.

Energie

Neutronensterne sind Überreste von Supernova-Explosionen, deren Materie so verdichtet wird, dass Atome zu ihren Bestandteilen, hauptsächlich Neutronen, verschmelzen. Ihre Dichte ist so hoch, dass ein Teelöffel dieser ultra-dichten Materie auf der Erde etwa sechs Milliarden Tonnen wiegen würde. Einige Neutronensterne besitzen auch starke Magnetfelder, die eine Million Milliarden Mal stärker als das Magnetfeld der Erde sind. Es überrascht also nicht, dass Neutronensternen ein einzigartiges Laboratorium für EU-finanzierte Wissenschaftler bieten, um Materie unter extremen Bedingungen, die in keinem Labor der Erde nachgeahmt werden können, zu erforschen. Das ultimative Ziel des Projekts NSLABDM (Neutron stars as a laboratory for dense matter) war es, die Eigenschaften von supranuklearer Materie in ihrem Innern durch Messungen der Massen, Radien und Kühlraten von Neutronenstern einzugrenzen. Die Ergebnisse stellen einen bedeutenden Fortschritt in unserem gegenwärtigen Verständnis von stark wechselwirkender Materie dar. Die Eigenschaften der heißen und dichten Umgebung im Kern von Neutronensternen wurden im Rahmen von effektiven Feldtheorien untersucht. Die Wissenschaftler von NSLABDM konnten Daten zu seltsamen Mesonen in Schwerionen-Kollisionsexperimenten verwenden, um eine Zustandsgleichung der Kernmaterie für Dichten von bis zu dem Dreifachen der Sättigungsschwelle von Kernmaterie zu definieren. Aus diesem Zusammenhang zwischen Dichte, Temperatur und Druck konnten sie einen Grenzwert für die höchste denkbare Neutronensternmasse abschätzen. Außerdem tun sich Neutronensterne bei etrem hohen Drücken in ihrem Inneren zusammen. Die entstehenden Paare entspannen sich zum niedrigsten in der Quantenphysik möglichen Energiezustand und verwandeln sich in eine Supraflüssigkeit. Die Wissenschaftler von NSLABDM analysierten verschiedene dissipative Prozesse, um Transportkoeffizienten abzuleiten, die den Schlüssel für das Verständnis der mikroskopischen Physik von reibungsfreier Materie bilden. Alle erhaltenen Ergebnisse wurden in den zahlreichen Veröffentlichungen des NSLABDM-Projekts beschrieben. Die Forschungsergebnisse liefern wertvolle Einblicke zu der Frage, wie Elementarteilchen interagieren und wie stark Materie komprimiert werden kann.

Schlüsselbegriffe

Neutronensterne, extrem dicht, Supernovae, magnetisches Feld, NSLABDM, Schwerionenkollision

Entdecken Sie Artikel in demselben Anwendungsbereich