Objective
Organic semiconductors are enabling flexible, large-area optoelectronic devices, such as organic light-emitting diodes, transistors, and solar cells. Due to their exceptionally long spin lifetimes, these carbon-based materials could also have an important impact on spintronics, where carrier spins, rather than charges, play a key role in transmitting, processing and storing information. However, to exploit this potential, a method for direct conversion of spin information into an electric signal is indispensable. Spin-charge conversion in inorganic semiconductors and metals has mainly relied on the spin-orbit interaction, a fundamental relativistic effect which couples the motion of electrons to their spins. The spin-orbit interaction causes a flow of spins, a spin current, to induce an electric field perpendicular to both the spin polarization and the flow direction of the spin current. This is called the inverse spin Hall effect (ISHE). We have very recently been able to observe for the first time the inverse spin-Hall effect in an organic conductor. This breakthrough raises important questions for our understanding of spin-charge conversion in materials with intrinsically weak spin-orbit coupling. It also expands dramatically the range of materials and structures available to address some currently not well understood scientific questions in spintronics and opens opportunities for realising novel spintronic devices for spin-based information processing and spin caloritronic energy harvesting that make use of unique properties of hybrid, organic-inorganic structures. The main objective of the proposed research is to take spintronics to a level that inorganic spintronics cannot reach on its own. The project is based on new theoretical and experimental methodologies arising at the interface between two currently disjoint scientific communities, organic semiconductors and inorganic spintronics, and aims to exploit synergies between chemistry, physics and theory.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesphysical scienceselectromagnetism and electronicsspintronics
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencescomputer and information sciencesdata sciencedata processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Topic(s)
Call for proposal
ERC-2013-SyG
See other projects for this call
Funding Scheme
ERC-SyG - Synergy grantHost institution
CB2 1TN Cambridge
United Kingdom