Project description
Membrane technology for CO2 conversion into valuable compounds
Carbon capture and storage into geological deposits is one of the main strategies used to decrease the concentration of CO2 in the atmosphere. However, it removes CO2 without considering its enormous potential as a source of carbon for the production of valuable compounds. Nature possesses a mechanism to concentrate CO2 and fixate the inorganic carbon into organic material as glucose. The EU-funded CO2LIFE project intends to develop a biomimetic chemical process that converts CO2 into valuable molecules using membrane technology. The team will employ a CO2 membrane-based absorption–crystallisation method using amino acid salts and convert CO2 into glucose or salts by using enzymes as catalysts supported by membranes.
Objective
The continued increase in the atmospheric concentration of CO2 due to anthropogenic emissions is leading to significant changes in climate, with the industry accounting for one-third of all the energy used globally and for almost 40% of worldwide CO2 emissions. Fast actions are required to decrease the concentration of this greenhouse gas in the atmosphere, value that has currently reaching 400 ppm. Among the technological possibilities that are on the table to reduce CO2 emissions, carbon capture and storage into geological deposits is one of the main strategies that is being applied. However, the final objective of this strategy is to remove CO2 without considering the enormous potential of this molecule as a source of carbon for the production of valuable compounds. Nature has developed an effective and equilibrated mechanism to concentrate CO2 and fixate the inorganic carbon into organic material (e.g. glucose) by means of enzymatic action. Mimicking Nature and take advantage of millions of years of evolution should be considered as a basic starting point in the development of smart and highly effective processes. In addition, the use of amino-acid salts for CO2 capture is envisaged as a potential approach to recover CO2 in the form of (bi)carbonates.
The project CO2LIFE presents the overall objective of developing a chemical process that converts carbon dioxide into valuable molecules using membrane technology. The strategy followed in this project is two-fold: i) CO2 membrane-based absorption-crystallization process on basis of using amino-acid salts, and ii) CO2 conversion into glucose or salts by using enzymes as catalysts supported on or retained by membranes. The final product, i.e. (bi)carbonates or glucose, has a large interest in the (bio)chemical industry, thus, new CO2 emissions are avoided and the carbon cycle is closed. This project will provide a technological solution at industrial scale for the removal and reutilization of CO2.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- engineering and technology chemical engineering separation technologies
- natural sciences chemical sciences catalysis
- engineering and technology environmental engineering carbon capture engineering
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1348 LOUVAIN LA NEUVE
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.